Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ChemMedChem ; 8(11): 1818-29, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24106097

RESUMEN

Metal-ion dysregulation and oxidative stress have been linked to the progressive neurological decline associated with neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. Herein we report the synthesis and chelating, antioxidant, and in vitro neuroprotective activities of a novel derivative of glutathione, GS(HQ)H, endowed with an 8-hydroxyquinoline group as a metal-chelating moiety. In vitro results showed that GS(HQ)H may be stable enough to be absorbed unmodified and arrive intact to the blood-brain barrier, that it may be able to remove Cu(II) and Zn(II) from the Aß peptide without causing any copper or zinc depletion in vivo, and that it protects SHSY-5Y human neuroblastoma cells against H2 O2 - and 6-OHDA-induced damage. Together, these findings suggest that GS(HQ)H could be a potential neuroprotective agent for the treatment of neurodegenerative diseases in which a lack of metal homeostasis has been reported as a key factor.


Asunto(s)
Quelantes , Glutatión/química , Glutatión/farmacología , Fármacos Neuroprotectores , Antioxidantes/química , Antioxidantes/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Quelantes/síntesis química , Quelantes/química , Quelantes/farmacología , Humanos , Concentración de Iones de Hidrógeno , Estructura Molecular , Neuroblastoma/patología , Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacología , Oxiquinolina/química , Especies Reactivas de Oxígeno , Solubilidad
2.
Eur J Med Chem ; 62: 486-97, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23416190

RESUMEN

Seven 3-hydroxy-4-pyridinecarboxylic acid derivatives (HPs), aza-analogues of salicylic acid and structurally close to other potent inflammatory pyridine compounds such as aminopyridinylmethanols and aminopyridinamines, were synthesized, and their anti-inflammatory activity was evaluated. The synthesis was performed by adopting a general procedure involving an intramolecular Diels-Alder cycloaddition of oxazoles with acrylic acid to form various substituted pyridinic acids. The newly synthesized HPs did not exhibit cytotoxic activity on human monocytes-derived macrophages at concentrations up to 10(2) µM. Anti-inflammatory activity of the compounds was screened in vitro by evaluating the capability to inhibit cytokines release from lipopolysaccharide (LPS) stimulated human macrophages. 3-Hydroxy-1-methyl-4-pyridinecarboxylic acid (24) was found to be the most active HP. At 10 µM concentration, HP 24 reduced LPS-induced and nuclear factor-κB activation and cyclooxygenase-2 expression, while increased intracellular reactive oxygen species generation and peroxisome proliferator-activated receptor (PPAR-γ) mRNA transcript level. Indeed, pre-treatment of LPS-exposed human macrophages with PPAR-γ specific antagonist completely prevented HP 24-induced TNF-α and IL8 down regulation, demonstrating that the PPARγ pathway is mandatory for the HP 24 anti-inflammatory effect. Finally, daily treatment with HP 24 ameliorated the outcome of DSS-induced colitis in mice, significantly reducing colonic MPO activity and IL-1ß tissue levels.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Ácidos Isonicotínicos/farmacología , PPAR gamma/genética , Antiinflamatorios no Esteroideos/síntesis química , Antiinflamatorios no Esteroideos/química , Citocinas/antagonistas & inhibidores , Citocinas/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Ácidos Isonicotínicos/síntesis química , Ácidos Isonicotínicos/química , Lipopolisacáridos/antagonistas & inhibidores , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Estructura Molecular , PPAR gamma/antagonistas & inhibidores , PPAR gamma/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Relación Estructura-Actividad , Transcripción Genética/efectos de los fármacos , Transcripción Genética/genética
3.
Anal Bioanal Chem ; 405(2-3): 585-601, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23096940

RESUMEN

Our objective is to illustrate the activity of the groups operating in Italy involved in identification and study of new chelating agents, mainly intended for treatment of human pathology correlated with metal overload. The objective of "chelation therapy" is removal of toxic metal ions from the human body or attenuation of their toxicity by transforming them into less toxic compounds or by dislocating them from the site at which they exert a toxic action. Because most of this research activity is related to chelating agents for iron and aluminium, diseases related to these two metal ions are briefly treated. Iron overload is the most common metal toxicity disease worldwide. The toxicity of aluminium in dialysis patients was a serious problem for haemodialysis units in the seventies and eighties of the last century. In particular, this review focuses on research performed by the group at Cagliari and Ferrara, and by that at Padova. The former is studying, above all, bisphosphonate and kojic acid derivatives, and the latter is investigating 3,4-hydroxypyridinecarboxylic acids with differently substituted pyridinic rings.


Asunto(s)
Aluminio/metabolismo , Quelantes/uso terapéutico , Hierro/metabolismo , Enfermedades Metabólicas/tratamiento farmacológico , Animales , Quelantes/metabolismo , Humanos , Sobrecarga de Hierro/tratamiento farmacológico , Sobrecarga de Hierro/metabolismo , Enfermedades Metabólicas/metabolismo
4.
Rapid Commun Mass Spectrom ; 24(7): 868-74, 2010 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-20196194

RESUMEN

Electrospray ionization mass spectrometry (ESI-MS) is very often employed to study metal/ligand equilibria in aqueous solution. However, the ionization process can introduce perturbations which affect the speciation results in an unpredictable way. It is necessary to identify these perturbations in order to correctly interpret the ESI-MS speciation results. Aluminium(III)/1,6-dimethyl-4-hydroxy-3-pyridinecarboxylate (DQ716) aqueous solutions at various pH were analysed by ESI-MS, and speciation results were compared with those obtained by equilibrium techniques. Differences observed were both qualitative and quantitative. The ESI-MS spectral changes due to different settings of the following instrumental parameters were analyzed: the solution flow rate (F(S)), the nebulizer gas flow rate (F(G)), the potential applied at the entrance capillary (E(C)), and the temperature of the drying gas (T(G)). The effects produced by F(S) and E(C) on the spectra strongly suggest the key role of surface activity in determining the relative fraction of the ions reaching the detector. The experimental effects of F(S) and T(G) were interpreted considering the presence of at least two reactions in the gas phase and a dimerization occurring in the droplets. These perturbations cannot be generalized because they appear to be chemical system-related and instrument-dependent. Therefore, the identification of perturbations is a required task for any metal-ligand equilibrium study performed by ESI-MS. Our results indicate that perturbations can be identified by evaluating the effects produced in the spectra by a change of instrumental parameters.

5.
Dalton Trans ; (1): 212-20, 2010 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-20023952

RESUMEN

The speciations of two drug candidate ligands, 2-hydroxypyridine-N-oxide (Hhpno) and 2-mercaptopyridine-N-oxide (Hmpno), with vanadate (V(V)) were determined at 25.0 degrees C and 0.20 mol dm(-3) KCl by pH-metric and (51)V-NMR methods. At pH 7.4, the two predominant compounds with both ligands are the VO(2)L(2) and VO(2)L(OH). NH(4)[VO(2)(hpno)(2)] x 3 H(2)O was prepared in solid form, and its crystal structure was determined by X-ray diffraction. The stabilities of the complexes VO(2)L(2) of five drug candidate ligands were compared at pH 7.4. In view of the stability sequence hpno > maltol approximately hdp (Hhdp: 3-hydroxy-1,2-dimethyl-4-pyridinone) >> mpno > picolinic acid, the first two of these ligands were chosen for equilibrium studies with apotransferrin (apoTf) competition. The V(V)-apoTf stability constants (log K(1) = 6.03 +/- 0.10; log K(2) = 5.46 +/- 0.18) determined by (51)V-NMR spectroscopy were confirmed by ultrafiltration. Both methods proved that there seems to be no hydrogencarbonate-vanadate competition for the apoTf anion-binding positions. The other potential high molecular mass V(V) binder in the serum is human serum albumin (HSA). As no interaction was detected by (51)V-NMR spectroscopy or fluorimetry, the binding properties of HSA were quantified on the basis of literature data. As a final conclusion, speciation modeling calculations suggest that, under serum conditions, apoTf is probably the primary metal ion binder, even in the presence of the most stable V(V) carrier ligands hpno and maltol and HSA plays a negligible role in V(V) binding.

6.
Dalton Trans ; (13): 2415-22, 2009 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-19290376

RESUMEN

Voltammetric experiments were used to demonstrate the possibility to rapidly obtain stability constants, E degrees values and kinetic parameters of Fe(III) complexes with 1,6-dimethyl-4-hydroxy-3-pyridinecarboxylic acid (DQ716) at pH 2.3 and 4-hydroxy-2-methyl-3-pyridinecarboxylic acid (DQ2) at pH 3. Fe(III) diffusion coefficient (D(Fe)= 5.5.10(-6) cm(2)/s), heterogeneous electron transfer kinetic constant (k degrees = 2.7.10(-4)cm/s), symmetry coefficient (alpha= 0.57) and Fe(III)/Fe(II) standard reduction potential (E degrees = 0.53 V vs. SCE) were determined beforehand and used to obtain all the other results. Digital simulation together with potentiometric data were used to define the whole reaction system in terms of thermodynamic and kinetic parameters. In particular, E degrees and the dissociation kinetic constant, k(b), of the 1:1 (E degrees = 0.22 V vs. SCE, k(b)= 0.032 s(-1)), 1:2 (E degrees = 0.098 V vs. SCE; k(b)= 0.22 s(-1)) and 1:3 (E degrees < or =-0.29 V vs. SCE, k(b)= 157.9 s(-1)) Fe(III)/DQ716 complexes, were estimated. Stability constants of the Fe(II) complexes were computed from these values. The voltammetric data were also interpreted with two independent formalisms: (1) solution of an equation system and (2) a curve fitting method based on the Koutecky-Levich equation. Both approaches allowed us to obtain the speciation of a Fe(III)/DQ716 solution at pH 2.3. Moreover, the second approach allowed the evaluation of the kinetic contributions, the stepwise stability constant of Fe(III)L(2) (7.65 +/- 0.07), and to define the mathematical formalization of the experimental result which link some key-points of the voltammetric curve (inflection points and plateaux) to D(Fe), k degrees , alpha(j) and E degrees . This approach was also successfully applied to obtain the speciation of a Fe(III)/DQ2 solution at pH 3.


Asunto(s)
Compuestos Férricos/química , Ácidos Nicotínicos/química , Termodinámica , Agua/química , Electroquímica , Electrodos , Concentración de Iones de Hidrógeno , Cinética , Ligandos
7.
Dalton Trans ; (10): 1815-24, 2009 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-19240917

RESUMEN

1,6-Dimethyl-4-hydroxy-3-pyridinecarboxylic acid (DQ716) and 4-hydroxy-2-methyl-3-pyridinecarboxylic acid (DQ2) were evaluated for possible application to iron (Fe) and aluminium (Al) chelation therapy. Metal/ligand solution chemistry, electrochemistry, cytotoxicity, octanol/water partitioning (D(o/w)), and chelation efficiency, were studied. The Fe(iii)/DQ716, Fe(iii)/DQ2, Al(iii)/DQ716, and Al(iii)/DQ2 solution chemistry was investigated in aqueous 0.6 mol kg(-1) (Na)Cl at 25 degrees C by means of potentiometric titrations, UV-vis spectrophotometry, and (1)H-NMR spectroscopy. DQ716 exhibited the highest coordination efficiency towards Fe(iii) and Al(iii) among all hydroxypyridinecarboxylic acids examined so far, whereas DQ2 complexes were significantly less stable. These results were confirmed by chelation efficiency measurements performed in an octanol-aqueous solution in the presence of those ligands and metals. Partitioning experiments at pH 7.4 showed both DQ716 and DQ2, and their Fe(iii) and Al(iii) complexes, to be hydrophilic. According to the voltammetric data, the free ligands (DQ716 and DQ2) and their metal complexes are not predicted to undergo redox cycling at in vivo conditions. The standard reduction potentials of these complexes, and the kinetics of their formation and dissociation, were obtained. The toxicity of DQ716 and of DQ2 was investigated with human cancer cell lines and normal human fibroblasts. Cytotoxic effects were observed only for DQ2 at 0.1 mM, following 3 d exposure. According to our results, DQ716 has the required favourable properties to be a chelating agent for Fe and Al.


Asunto(s)
Aluminio/química , Quelantes/química , Hierro/química , Ácidos Nicotínicos/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Quelantes/farmacología , Cristalografía por Rayos X , Electroquímica , Células HeLa , Humanos , Espectroscopía de Resonancia Magnética , Ácidos Nicotínicos/farmacología , Termodinámica
8.
Dalton Trans ; (13): 1689-97, 2008 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-18354766

RESUMEN

In view of a possible application to Fe and Al chelation therapy, 2-methyl-3-hydroxy-4-pyridinecarboxylic acid (DT2) was synthesised, and its complex formation, electrochemical and cytotoxic properties were studied. The complexing properties of DT2 towards Fe(III) and Al(III) were investigated in aqueous 0.6 m (Na)Cl at 25 degrees C by means of potentiometric titrations, UV-vis spectrophotometry, and 1H NMR spectroscopy. DT2 is a triprotic acid (H3L+) having pKa1 = 0.47, pKa2 = 5.64 and pKa3 = 11.18. The metal-ligand complexes observed in solution and their corresponding stability constants (log beta values) are the following: FeLH (19.38), FeL (16.01), FeLH(-1) (12.28), FeL2H2 (37.29), FeL3H3 (53.41), FeL3H2 (47.99), FeL3H (41.21) and FeL3 (34.1); AlLH (17.43), AlL2H2 (33.74), AlL2H (27.6), AlL3H3 (48.72), AlL3H2 (42.67), AlL3H (35.8) and AlL3 (27.92). The complex formation between DT2 and Fe(II) was studied by UV-vis: the weak complex FeLH (log beta = 15.8) was detected. DT2 shows a lower complexation efficiency with Fe(III) and Al(III) than that of other available chelators, but higher than that of its non-methylated analogue 3-hydroxy-4-pyridinecarboxylic acid (DT0). The electrochemical behaviour of DT2 was investigated by means of cyclic voltammetry, indicating that the oxidation of the ligand proceeds through a two electron process with a CECE mechanism. Voltammetric curves suggest that the oxidation or the reduction of DT2 in vivo is unlikely. According to the thermodynamic data, also the Fe(III)-DT2 complexes do not undergo redox cycling at physiological pH. Amperometric titrations of solutions containing Fe(III) and DT2 at pH = 5 indicated the same Fe(III) : ligand stoichiometric ratio as calculated from potentiometric data. The toxicity of DT2 and of other simple hydroxypyridinecarboxylic acids was investigated in vitro and no cytotoxic activity was observed (IC50 > 0.1 mM) on cancer cell lines and also on primary human cells, following a three day exposure.


Asunto(s)
Aluminio/química , Quelantes/química , Quelantes del Hierro/química , Ácidos Isonicotínicos/química , Ácidos Isonicotínicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Quelantes/farmacología , Electroquímica , Fibroblastos/efectos de los fármacos , Humanos , Quelantes del Hierro/farmacología , Ácidos Isonicotínicos/síntesis química , Espectroscopía de Resonancia Magnética , Espectrofotometría Ultravioleta , Termodinámica , Pruebas de Toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...