Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Front Physiol ; 13: 862793, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35774286

RESUMEN

Reduced muscle size and accumulation of paraspinal muscle fat content (PFC) have been reported in lumbopelvic muscles after spaceflights and head-down tilt (HDT) bed rest. While some information is available regarding reconditioning programs on muscle atrophy recovery, the effects on the accumulation of PFC are unknown. Recently, a device (the Functional Re-adaptive Exercise Device-FRED) has been developed which aims to specifically recruit lumbopelvic muscles. This study aimed to investigate the effects of a standard reconditioning (SR) program and SR program supplemented by FRED (SR + FRED) on the recovery of the lumbopelvic muscles following 60-day HDT bed rest. Twenty-four healthy participants arrived at the facility for baseline data collection (BDC) before the bed rest period. They remained in the facility for 13-day post-HDT bed rest and were randomly allocated to one of two reconditioning programs: SR or SR + FRED. Muscle volumes of the lumbar multifidus (LM), lumbar erector spinae (LES), quadratus lumborum (QL), and psoas major (PM) muscles were measured from axial T1-weighted magnetic resonance imaging (MRI) at all lumbar intervertebral disc levels. PFC was determined using a chemical shift-based lipid/water Dixon sequence. Each lumbopelvic muscle was segmented into four equal quartiles (from medial to lateral). MRI of the lumbopelvic region was conducted at BDC, Day-59 of bed rest (HDT59), and Day-13 after reconditioning (R13). Comparing R13 with BDC, the volumes of the LM muscle at L4/L5 and L5/S1, LES at L1/L2, and QL at L3/L4 had not recovered (all-p < 0.05), and the PM muscle remained larger at L1/L2 (p = 0.001). Accumulation of PFC in the LM muscle at the L4/L5 and L5/S1 levels remained higher in the centro-medial regions at R13 than BDC (all-p < 0.05). There was no difference between the two reconditioning programs. A 2-week reconditioning program was insufficient to fully restore all volumes of lumbopelvic muscles and reverse the accumulation of PFC in the muscles measured to BDC values, particularly in the LM muscle at the lower lumbar levels. These findings suggest that more extended reconditioning programs or alternative exercises may be necessary to fully restore the size and properties of the lumbopelvic muscles after prolonged bed rest.

2.
Spine J ; 22(4): 616-628, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34813960

RESUMEN

BACKGROUND CONTEXT: Prolonged bedrest induces accumulation of intramuscular lipid concentration (ILC) in the lumbar musculature; however, spatial distribution of ILC has not been determined. Artificial gravity (AG) mitigates some adaptations induced by 60 day bedrest by creating a head-to-feet force while participants are in a supine position. PURPOSE: To quantify the spatial distribution of accumulation of ILC in the lumbar musculature after 60 day bedrest, and whether this can be mitigated by AG exposure. STUDY DESIGN: Prospective longitudinal study. PATIENT SAMPLE: Twenty-four healthy individuals (8 females) participated in the study: Eight received 30 min continuous AG (cAG); Eight received 6 × 5 min AG (iAG), interspersed with rests; Eight were not exposed to AG (CRTL). OUTCOME MEASURES: From 3T magnetic resonance imaging (MRI), axial images were selected to assess lumbar multifidus (LM), lumbar erector spinae (LES), quadratus lumborum (QL), and psoas major (PM) muscles from L1/L2 to L5/S1 intervertebral disc levels. Chemical shift-based 2-echo lipid and/or water Dixon sequence was used to measure tissue composition. Each lumbar muscle was segmented into four equal quartiles (from medial to lateral). METHODS: Participants arrived at the facility for the baseline data collection before undergoing a 60 day strict 6° head-down tilt (HDT) bedrest period. MRI of the lumbopelvic region was conducted at baseline and Day-59 of bedrest. Participants performed all activities, including hygiene, in 6° HDT and were discouraged from moving excessively or unnecessarily. RESULTS: At the L4/L5 and L5/S1 intervertebral disc levels, 60-day bedrest induced a greater increase in ILC in medial and lateral regions (∼+4%) of the LM than central regions (∼+2%; p<.05). A smaller increase in ILC was induced in the lateral region of LES (∼+1%) at L1/L2 and L2/L3 than at the centro-medial region (∼+2%; p<.05). There was no difference between CRTL and intervention groups. CONCLUSIONS: Inhomogeneous spatial distribution of accumulation of ILC was found in the lumbar musculature after 60 day bedrest. These findings might reflect pathophysiological mechanisms related to muscle disuse and contribute to localized lumbar spine dysfunction. Altered spatial distribution of ILC may impair lumbar spine function after prolonged body unloading, which could increase injury risk to vulnerable soft tissues, such as the lumbar intervertebral discs. These novel results may represent a new biomarker of lumbar deconditioning for astronauts, bedridden, sedentary individuals, or those with chronic back pain. Changes are potentially modifiable but not by the AG protocols tested here.


Asunto(s)
Reposo en Cama , Músculos Paraespinales , Reposo en Cama/efectos adversos , Femenino , Humanos , Lípidos , Estudios Longitudinales , Vértebras Lumbares/diagnóstico por imagen , Imagen por Resonancia Magnética , Masculino , Músculos Paraespinales/patología , Estudios Prospectivos
3.
Front Physiol ; 12: 745811, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34867450

RESUMEN

Exposure to spaceflight and head-down tilt (HDT) bed rest leads to decreases in the mass of the gluteal muscle. Preliminary results have suggested that interventions, such as artificial gravity (AG), can partially mitigate some of the physiological adaptations induced by HDT bed rest. However, its effect on the gluteal muscles is currently unknown. This study investigated the effects of daily AG on the gluteal muscles during 60-day HDT bed rest. Twenty-four healthy individuals participated in the study: eight received 30 min of continuous AG; eight received 6 × 5 min of AG, interspersed with rest periods; eight belonged to a control group. T1-weighted Dixon magnetic resonance imaging of the hip region was conducted at baseline and day 59 of HDT bed rest to establish changes in volumes and intramuscular lipid concentration (ILC). Results showed that, across groups, muscle volumes decreased by 9.2% for gluteus maximus (GMAX), 8.0% for gluteus medius (GMED), and 10.5% for gluteus minimus after 59-day HDT bed rest (all p < 0.005). The ILC increased by 1.3% for GMAX and 0.5% for GMED (both p < 0.05). Neither of the AG protocols mitigated deconditioning of the gluteal muscles. Whereas all gluteal muscles atrophied, the ratio of lipids to intramuscular water increased only in GMAX and GMED muscles. These changes could impair the function of the hip joint and increased the risk of falls. The deconditioning of the gluteal muscles in space may negatively impact the hip joint stability of astronauts when reexpose to terrestrial gravity.

4.
J Appl Physiol (1985) ; 131(2): 689-701, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34197228

RESUMEN

This study investigated whether artificial gravity (AG), induced by short-radius centrifugation, mitigated deterioration in standing balance and anticipatory postural adjustments (APAs) of trunk muscles following 60-day head-down tilt bed rest. Twenty-four participants were allocated to one of three groups: control group (n = 8); 30-min continuous AG daily (n = 8); and intermittent 6 × 5 min AG daily (n = 8). Before and immediately after bed rest, standing balance was assessed in four conditions: eyes open and closed on both stable and foam surfaces. Measures including sway path, root mean square, and peak sway velocity, sway area, sway frequency power, and sway density curve were extracted from the center of pressure displacement. APAs were assessed during rapid arm movements using intramuscular or surface electromyography electrodes of the rectus abdominis; obliquus externus and internus abdominis; transversus abdominis; erector spinae at L1, L2, L3, and L4 vertebral levels; and deep lumbar multifidus muscles. The relative latency between the EMG onset of the deltoid and each of the trunk muscles was calculated. All three groups had poorer balance performance in most of the parameters (all P < 0.05) and delayed APAs of the trunk muscles following bed rest (all P < 0.05). Sway path and sway velocity were deteriorated, and sway frequency power was less in those who received intermittent AG than in the control group (all P < 0.05), particularly in conditions with reduced proprioceptive feedback. These data highlight the potential of intermittent AG to mitigate deterioration of some aspects of postural control induced by gravitational unloading, but no protective effects on trunk muscle responses were observed.NEW & NOTEWORTHY This study presents novel insights into the effect of artificial gravity (AG) on the deterioration of standing balance and anticipatory postural adjustments (APAs) of trunk muscles induced by 60-day strict head-down bed rest. The results indicated severe balance dysfunction and delayed APAs during rapid arm movement. AG partially mitigated the deterioration in standing balance and may thus be considered as a potential countermeasure for future planetary surface explorations. Optimization of AG protocols might enhance effects.


Asunto(s)
Reposo en Cama , Gravedad Alterada , Reposo en Cama/efectos adversos , Centrifugación , Electromiografía , Inclinación de Cabeza , Humanos , Músculo Esquelético , Músculos Paraespinales , Equilibrio Postural
5.
J Appl Physiol (1985) ; 131(1): 356-368, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34080918

RESUMEN

Exposure to axial unloading induces adaptations in paraspinal muscles, as shown after spaceflights. This study investigated whether daily exposure to artificial gravity (AG) mitigated lumbar spine flattening and muscle atrophy associated with 60-day head-down tilt (HDT) bed rest (Earth-based space analog). Twenty-four healthy individuals participated in the study: 8 received 30-min continuous AG; 8 received 6 × 5-min AG interspersed with rest periods; and 8 received no AG exposure (control group). Magnetic resonance imaging (MRI) of the lumbopelvic region was conducted at baseline (BDC) and at day 59 of HDT (HDT59). Longitudinal relaxation time (T1)-weighted images were used to assess morphology of the lumbar spine (spinal length, intervertebral disk angles, disk area) and volumes of the lumbar multifidus (LM), lumbar erector spinae (LES), quadratus lumborum (QL), and psoas major (PM) muscles from L1/L2 to L5/S1 vertebral levels. A chemical shift-based two-point lipid/water Dixon sequence was used to evaluate muscle composition. Results showed that spinal length and disk area increased (P < 0.05); intervertebral disk angles (P < 0.05) and muscle volumes of LM, LES, and QL reduced (P < 0.01); and lipid-to-water ratio for the LM and LES muscles increased (P < 0.01) after HDT59 in all groups. Neither of the AG protocols mitigated the lumbar spinae deconditioning induced by HDT bed rest. The increase in lipid-to-water ratio in LM and LES muscles indicates an increased relative intramuscular lipid concentration. Altered muscle composition in atrophied muscles may impair lumbar spine function after body unloading, which could increase injury risk to vulnerable soft tissues. This relationship needs further investigation.NEW & NOTEWORTHY This study presents novel insights into the morphological adaptations occurring in the lumbar spine after 60-day head-down bed rest and the potential role of artificial gravity (AG) to mitigate them. Results demonstrated no protective effect of AG protocols used in this study. In atrophied paraspinal muscles, the ratio of lipids versus intramuscular water increased in the postural lumbar muscles, which could impair muscle function during upright standing. These findings have relevance for future space explorations.


Asunto(s)
Reposo en Cama , Gravedad Alterada , Reposo en Cama/efectos adversos , Inclinación de Cabeza , Humanos , Vértebras Lumbares/diagnóstico por imagen , Región Lumbosacra , Imagen por Resonancia Magnética , Atrofia Muscular/etiología
6.
J Appl Physiol (1985) ; 128(4): 1044-1055, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32163325

RESUMEN

Reduced paraspinal muscle size and flattening of spinal curvatures have been documented after spaceflight. Assessment of trunk adaptations to hypogravity can contribute to development of specific countermeasures. In this study, parabolic flights were used to investigate spinal curvature and muscle responses to hypogravity. Data from five trials at 0.25 g, 0.50 g, and 0.75 g were recorded from six participants positioned in a kneeling-seated position. During the first two trials, participants maintained a normal, upright posture. In the last three trials, small-amplitude perturbations were delivered in the anterior direction at the T10 level. Spinal curvature was estimated with motion capture cameras. Trunk displacement and contact force between the actuator and participant were recorded. Muscle activity responses were collected by intramuscular electromyography (iEMG) of the deep and superficial lumbar multifidus, iliocostalis lumborum, longissimus thoracis, quadratus lumborum, transversus abdominis, obliquus internus, and obliquus externus muscles. The root mean square iEMG and the average spinal angles were calculated. Trunk admittance and muscle responses to perturbations were calculated as closed-loop frequency-response functions. Compared with 0.75 g, 0.25 g resulted in lower activation of the longissimus thoracis (P = 0.002); lower responses of the superficial multifidus at low frequencies (P = 0.043); lower responses of the superficial multifidus (P = 0.029) and iliocostalis lumborum (P = 0.043); lower trunk admittance (P = 0.037) at intermediate frequencies; and stronger responses of the transversus abdominis at higher frequencies (P = 0.032). These findings indicate that exposure to hypogravity reduces trunk admittance, partially compensated by weaker stabilizing contributions of the paraspinal muscles and coinciding with an apparent increase of deep abdominal muscle activity.NEW & NOTEWORTHY This study presents for the first time novel insights into the adaptations to hypogravity of spinal curvatures, trunk stiffness, and paraspinal muscle activity. We showed that exposure to hypogravity reduces the displacement of the trunk by an applied perturbation, partially compensated by weaker stabilizing contributions of the paraspinal muscles and concomitant increase in abdominal muscle responses. These findings may have relevance for future recommendations for planetary surface explorations.


Asunto(s)
Región Lumbosacra , Músculo Esquelético , Electromiografía , Humanos , Hipogravedad , Postura , Columna Vertebral
7.
J Sports Sci ; 37(18): 2138-2143, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31138007

RESUMEN

Mechanistic studies of the Functional Re-adaptive Exercise Device (FRED) have shown it automatically recruits Lumbar Multifidus (LM) and Transversus Abdominis (TrA) - two deep-spinal muscles that are atrophied and show altered motor control in low back pain (LBP). No studies have investigated the time required to familiarise to FRED exercise, which is required to inform future FRED based clinical trial protocols. This study therefore determined the effect of time, during FRED exercise, on biomechanical outcome measures, to establish the familiarisation period, and assess for loss of technique throughout a ten minute trial. A cohort comparison study of 148 participants, 70 experiencing low back pain, had lumbopelvic kinematics, exercise frequency and movement variability measured during a 10 minute trial. Magnitude-based inference was used to assess for familiarisation, using plots of variation over time with familiarised reference ranges. The no pain group took 170 seconds, and the back pain group took 150 seconds, to familiarise. A familiarisation period of at least 170 seconds (2.8 minutes) is recommended. This justifies, and provides a familiarisation time for use of the FRED as a motor control intervention.


Asunto(s)
Terapia por Ejercicio/instrumentación , Aprendizaje , Dolor de la Región Lumbar/rehabilitación , Músculos Abdominales , Adulto , Fenómenos Biomecánicos , Femenino , Humanos , Región Lumbosacra , Masculino , Persona de Mediana Edad , Movimiento , Músculos Paraespinales , Factores de Tiempo
8.
Gait Posture ; 66: 189-193, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30199777

RESUMEN

This study investigated the effects of a single exercise session using a device developed for postural muscle training on the function of postural muscles in healthy, pain free individuals. During standardised rapid arm movements, timing of onset of electromyography (EMG) was measured using intramuscular and surface recordings of the transversus abdominis (TrA), obliquus internus abdominis (OI), obliquus externus abdominis (OE), lumbar multifidus (LM) and lumbar erector spinae (LES) muscles. A single exercise session with the device led to significantly (main effect of time: P = 0.03) earlier LES EMG onset in advance of the postural perturbation induced by rapid forward arm movements from -1 ms (SD: 32 ms) at baseline to -11 ms (SD: 27 ms) post-exercise and -16 ms (SD: 22 ms) at 10-min Wash-Out after the FRED exercise bout. The timing of EMG onset of the other trunk muscles was not affected by the single bout of exercise. A significant correlation was found between background activity and the EMG onset times of of TrA (r = 0.6; P < 0.001), OI (r = 0.59; P < 0.001), LES (r = 0.32; P = 0.046) and LMs (r = 0.77; P < 0.001). Higher levels of trunk muscle background activity were associated with later onset times. The present findings suggest that a single exposure to the postural training device can induce small changes in spinal muscle function in healthy pain free individuals.


Asunto(s)
Electromiografía/métodos , Ejercicio Físico/fisiología , Contracción Muscular/fisiología , Músculos Paraespinales/fisiología , Postura/fisiología , Adulto , Prueba de Esfuerzo/instrumentación , Humanos , Masculino , Torso/fisiología
9.
Physiol Rep ; 5(6)2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28320889

RESUMEN

Gravitational unloading leads to adaptations of the human body, including the spine and its adjacent structures, making it more vulnerable to injury and pain. The Functional Re-adaptive Exercise Device (FRED) has been developed to activate the deep spinal muscles, lumbar multifidus (LM) and transversus abdominis (TrA), that provide inter-segmental control and spinal protection. The FRED provides an unstable base of support and combines weight bearing in up-right posture with side alternating, elliptical leg movements, without any resistance to movement. The present study investigated the activation of LM, TrA, obliquus externus (OE), obliquus internus (OI), abdominis, and erector spinae (ES) during FRED exercise using intramuscular fine-wire and surface EMG Nine healthy male volunteers (27 ± 5 years) have been recruited for the study. FRED exercise was compared with treadmill walking. It was confirmed that LM and TrA were continually active during FRED exercise. Compared with walking, FRED exercise resulted in similar mean activation of LM and TrA, less activation of OE, OI, ES, and greater variability of lumbo-pelvic muscle activation patterns between individual FRED/gait cycles. These data suggest that FRED continuously engages LM and TrA, and therefore, has the potential as a stationary exercise device to train these muscles.


Asunto(s)
Terapia por Ejercicio/métodos , Movimiento/fisiología , Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Torso/fisiología , Músculos Abdominales/fisiología , Adulto , Electromiografía , Humanos , Masculino , Postura/fisiología , Soporte de Peso/fisiología , Adulto Joven
10.
Musculoskelet Sci Pract ; 27 Suppl 1: S5-S14, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28173932

RESUMEN

BACKGROUND: No studies have been published on an astronaut population to assess the effectiveness of countermeasures for limiting physiological changes in the lumbopelvic region caused by microgravity exposure during spaceflight. However, several studies in this area have been done using spaceflight simulation via bed-rest. The purpose of this systematic review was to evaluate the effectiveness of countermeasures designed to limit physiological changes to the lumbopelvic region caused by spaceflight simulation by means of bed-rest. METHODS: Electronic databases were searched from the start of their records to November 2014. Studies were assessed with PEDro, Cochrane Risk of Bias and a bed-rest study quality tool. Magnitude based inferences were used to assess countermeasure effectiveness. RESULTS: Seven studies were included. There was a lack of consistency across studies in reporting of outcome measures. Some countermeasures were found to be successful in preventing some lumbopelvic musculoskeletal changes, but not others. For example, resistive vibration exercise prevented muscle changes, but showed the potential to worsen loss of lumbar lordosis and intervertebral disc height. CONCLUSION: Future studies investigating countermeasures should report consistent outcomes, and also use an actual microgravity environment. Additional research with patient reported quality of life and functional outcome measures is advocated.


Asunto(s)
Reposo en Cama/efectos adversos , Terapia por Ejercicio/métodos , Región Lumbosacra/lesiones , Atrofia Muscular/etiología , Atrofia Muscular/terapia , Simulación de Ingravidez/efectos adversos , Ingravidez/efectos adversos , Adulto , Femenino , Humanos , Masculino , Vuelo Espacial
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...