Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38405915

RESUMEN

In neurons of the mammalian central nervous system (CNS), axonal mitochondria are thought to be indispensable for supplying ATP during energy-consuming processes such as neurotransmitter release. Here, we demonstrate using multiple, independent, in vitro and in vivo approaches that the majority (~80-90%) of axonal mitochondria in cortical pyramidal neurons (CPNs), lack mitochondrial DNA (mtDNA). Using dynamic, optical imaging analysis of genetically encoded sensors for mitochondrial matrix ATP and pH, we demonstrate that in axons of CPNs, but not in their dendrites, mitochondrial complex V (ATP synthase) functions in a reverse way, consuming ATP and protruding H+ out of the matrix to maintain mitochondrial membrane potential. Our results demonstrate that in mammalian CPNs, axonal mitochondria do not play a major role in ATP supply, despite playing other functions critical to regulating neurotransmission such as Ca2+ buffering.

2.
Dev Cell ; 59(7): 869-881.e6, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38359832

RESUMEN

Spatial single-cell omics provides a readout of biochemical processes. It is challenging to capture the transient lipidome/metabolome from cells in a native tissue environment. We employed water gas cluster ion beam secondary ion mass spectrometry imaging ([H2O]n>28K-GCIB-SIMS) at ≤3 µm resolution using a cryogenic imaging workflow. This allowed multiple biomolecular imaging modes on the near-native-state liver at single-cell resolution. Our workflow utilizes desorption electrospray ionization (DESI) to build a reference map of metabolic heterogeneity and zonation across liver functional units at tissue level. Cryogenic dual-SIMS integrated metabolomics, lipidomics, and proteomics in the same liver lobules at single-cell level, characterizing the cellular landscape and metabolic states in different cell types. Lipids and metabolites classified liver metabolic zones, cell types and subtypes, highlighting the power of spatial multi-omics at high spatial resolution for understanding celluar and biomolecular organizations in the mammalian liver.


Asunto(s)
Fenómenos Bioquímicos , Lipidómica , Animales , Lipidómica/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Lípidos/análisis , Hígado , Mamíferos
3.
bioRxiv ; 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38234835

RESUMEN

Pooled genetic screens are powerful tools to study gene function in a high-throughput manner. Typically, sequencing-based screens require cell lysis, which limits the examination of critical phenotypes such as cell morphology, protein subcellular localization, and cell-cell/tissue interactions. In contrast, emerging optical pooled screening methods enable the investigation of these spatial phenotypes in response to targeted CRISPR perturbations. In this study, we report a multi-omic optical pooled CRISPR screening method, which we have named CRISPRmap. Our method combines a novel in situ CRISPR guide identifying barcode readout approach with concurrent multiplexed immunofluorescence and in situ RNA detection. CRISPRmap barcodes are detected and read out through combinatorial hybridization of DNA oligos, enhancing barcode detection efficiency, while reducing both dependency on third party proprietary sequencing reagents and assay cost. Notably, we conducted a multi-omic base-editing screen in a breast cancer cell line on core DNA damage repair genes involved in the homologous recombination and Fanconi anemia pathways investigating how nucleotide variants in those genes influence DNA damage signaling and cell cycle regulation following treatment with ionizing radiation or DNA damaging agents commonly used for cancer therapy. Approximately a million cells were profiled with our multi-omic approach, providing a comprehensive phenotypic assessment of the functional consequences of the studied variants. CRISPRmap enabled us to pinpoint likely-pathogenic patient-derived mutations that were previously classified as variants of unknown clinical significance. Furthermore, our approach effectively distinguished barcodes of a pooled library in tumor tissue, and we coupled it with cell-type and molecular phenotyping by cyclic immunofluorescence. Multi-omic spatial analysis of how CRISPR-perturbed cells respond to various environmental cues in the tissue context offers the potential to significantly expand our understanding of tissue biology in both health and disease.

5.
Cancer Cell ; 39(6): 866-882.e11, 2021 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-33930309

RESUMEN

Cancer-associated fibroblasts (CAF) are a poorly characterized cell population in the context of liver cancer. Our study investigates CAF functions in intrahepatic cholangiocarcinoma (ICC), a highly desmoplastic liver tumor. Genetic tracing, single-cell RNA sequencing, and ligand-receptor analyses uncovered hepatic stellate cells (HSC) as the main source of CAF and HSC-derived CAF as the dominant population interacting with tumor cells. In mice, CAF promotes ICC progression, as revealed by HSC-selective CAF depletion. In patients, a high panCAF signature is associated with decreased survival and increased recurrence. Single-cell RNA sequencing segregates CAF into inflammatory and growth factor-enriched (iCAF) and myofibroblastic (myCAF) subpopulations, displaying distinct ligand-receptor interactions. myCAF-expressed hyaluronan synthase 2, but not type I collagen, promotes ICC. iCAF-expressed hepatocyte growth factor enhances ICC growth via tumor-expressed MET, thus directly linking CAF to tumor cells. In summary, our data demonstrate promotion of desmoplastic ICC growth by therapeutically targetable CAF subtype-specific mediators, but not by type I collagen.


Asunto(s)
Neoplasias de los Conductos Biliares/patología , Fibroblastos Asociados al Cáncer/patología , Colangiocarcinoma/patología , Anciano , Animales , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/metabolismo , Conductos Biliares Intrahepáticos/patología , Fibroblastos Asociados al Cáncer/metabolismo , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Colágeno Tipo I/metabolismo , Femenino , Células Estrelladas Hepáticas/citología , Células Estrelladas Hepáticas/patología , Factor de Crecimiento de Hepatocito/metabolismo , Humanos , Hialuronano Sintasas/genética , Hialuronano Sintasas/metabolismo , Ácido Hialurónico/metabolismo , Masculino , Ratones Transgénicos , Persona de Mediana Edad , Proteínas Proto-Oncogénicas c-met/metabolismo , Microambiente Tumoral
6.
Cell Rep ; 30(10): 3411-3423.e7, 2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-32160546

RESUMEN

Ferroptosis is a type of regulated cell death driven by the iron-dependent accumulation of oxidized polyunsaturated fatty acid-containing phospholipids. There is no reliable way to selectively stain ferroptotic cells in tissue sections to characterize the extent of ferroptosis in animal models or patient samples. We address this gap by immunizing mice with membranes from lymphoma cells treated with the ferroptosis inducer piperazine erastin and screening ∼4,750 of the resulting monoclonal antibodies generated for their ability to selectively detect cells undergoing ferroptosis. We find that one antibody, 3F3 ferroptotic membrane antibody (3F3-FMA), is effective as a selective ferroptosis-staining reagent. The antigen of 3F3-FMA is identified as the human transferrin receptor 1 protein (TfR1). We validate this finding with several additional anti-TfR1 antibodies and compare them to other potential ferroptosis-detecting reagents. We find that anti-TfR1 and anti-malondialdehyde adduct antibodies are effective at staining ferroptotic tumor cells in multiple cell culture and tissue contexts.


Asunto(s)
Ferroptosis , Receptores de Transferrina/metabolismo , Animales , Anticuerpos Monoclonales/metabolismo , Antígenos/metabolismo , Biomarcadores/metabolismo , Línea Celular , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Ferroptosis/efectos de los fármacos , Aparato de Golgi/metabolismo , Humanos , Inyecciones , Ratones , Piperazina/farmacología , Piperazinas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Proc Natl Acad Sci U S A ; 116(22): 10798-10803, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31076553

RESUMEN

The transformation of molecular binding events into cellular decisions is the basis of most biological signal transduction. A fundamental challenge faced by these systems is that reliance on protein-ligand chemical affinities alone generally results in poor sensitivity to ligand concentration, endangering the system to error. Here, we examine the lipid-binding pleckstrin homology and Tec homology (PH-TH) module of Bruton's tyrosine kinase (Btk). Using fluorescence correlation spectroscopy (FCS) and membrane-binding kinetic measurements, we identify a phosphatidylinositol (3-5)-trisphosphate (PIP3) sensing mechanism that achieves switch-like sensitivity to PIP3 levels, surpassing the intrinsic affinity discrimination of PIP3:PH binding. This mechanism employs multiple PIP3 binding as well as dimerization of Btk on the membrane surface. Studies in live cells confirm that mutations at the dimer interface and peripheral site produce effects comparable to that of the kinase-dead Btk in vivo. These results demonstrate how a single protein module can institute an allosteric counting mechanism to achieve high-precision discrimination of ligand concentration. Furthermore, this activation mechanism distinguishes Btk from other Tec family member kinases, Tec and Itk, which we show are not capable of dimerization through their PH-TH modules. This suggests that Btk plays a critical role in the stringency of the B cell response, whereas T cells rely on other mechanisms to achieve stringency.


Asunto(s)
Agammaglobulinemia Tirosina Quinasa/química , Agammaglobulinemia Tirosina Quinasa/metabolismo , Transducción de Señal/fisiología , Animales , Linfocitos B/metabolismo , Línea Celular , Pollos , Ratones , Modelos Moleculares , Mutación , Fosfatos de Fosfatidilinositol/metabolismo , Fosforilación , Conformación Proteica , Dominios Proteicos/fisiología , Multimerización de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...