Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Opt Express ; 30(24): 43655-43663, 2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36523059

RESUMEN

We present a method to accurately control the photon energies for hard X-ray Self-seeding schemes with a single crystal monochromator in transmissive geometry. The energy calibration is performed by measuring which pairs of the machine pitch and yaw angles for different crystallographic planes reflect the X-ray at the same wavelength. The free parameters of an analytical formula for the self-seeding energies are determined by fitting the observed intersections and the normalized derivative with respect to the pitch and yaw angles in the observed intersections. The method requires a hard X-ray spectrometer, but it does not rely on its absolute energy calibration. Instead, identifying the self-seeded energies above the SASE background or the monochromatic notches within the SASE bandwidth is sufficient for the calibration.

2.
Sci Rep ; 12(1): 3253, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35228548

RESUMEN

X-ray Free Electron Lasers provide femtosecond x-ray pulses with narrow bandwidth and unprecedented peak brightness. Special modes of operation have been developed to deliver double pulses for x-ray pump, x-ray probe experiments. However, the longest delay between the two pulses achieved with existing single bucket methods is less than 1 picosecond, thus preventing the exploration of longer time-scale dynamics. We present a novel two-bucket scheme covering delays from 350 picoseconds to hundreds of nanoseconds in discrete steps of 350 picoseconds. Performance for each pulse can be similar to the one in a single pulse operation. The method has been experimentally tested with the Linac Coherent Light Source (LCLS-I) and the copper linac with LCLS-II hard x-ray undulators.

3.
Phys Rev Lett ; 127(5): 058001, 2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34397240

RESUMEN

We report observations of nanosecond nonuniform colloidal dynamics in a free flowing liquid jet using ultrafast x-ray speckle visibility spectroscopy. Utilizing a nanosecond double-bunch mode, the Linac Coherent Light Source free electron laser produced pairs of femtosecond coherent hard x-ray pulses. By exploring anisotropy in the visibility of summed speckle patterns which relates to the correlation functions, we evaluate not only the average particle flow rate in a colloidal nanoparticle jet, but also the nonuniform flow field within. The methodology presented here establishes the foundation for the study of nano- and atomic-scale inhomogeneous fluctuations in complex matter using x-ray free electron laser sources.

4.
Phys Rev Lett ; 126(10): 104802, 2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33784160

RESUMEN

We report the demonstration of optical compression of an electron beam and the production of controllable trains of femtosecond, soft x-ray pulses with the Linac Coherent Light Source (LCLS) free-electron laser (FEL). This is achieved by enhanced self-amplified spontaneous emission with a 2 µm laser and a dechirper device. Optical compression was achieved by modulating the energy of an electron beam with the laser and then compressing with a chicane, resulting in high current spikes on the beam which we observe to lase. A dechirper was then used to selectively control the lasing region of the electron beam. Field autocorrelation measurements indicate a train of pulses, and we find that the number of pulses within the train can be controlled (from 1 to 5 pulses) by varying the dechirper position and undulator taper. These results are a step toward attosecond spectroscopy with x-ray FELs as well as future FEL schemes relying on optical compression of an electron beam.

5.
Nat Commun ; 12(1): 1672, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33723266

RESUMEN

X-ray free-electron lasers (XFELs) enable obtaining novel insights in structural biology. The recently available MHz repetition rate XFELs allow full data sets to be collected in shorter time and can also decrease sample consumption. However, the microsecond spacing of MHz XFEL pulses raises new challenges, including possible sample damage induced by shock waves that are launched by preceding pulses in the sample-carrying jet. We explored this matter with an X-ray-pump/X-ray-probe experiment employing haemoglobin microcrystals transported via a liquid jet into the XFEL beam. Diffraction data were collected using a shock-wave-free single-pulse scheme as well as the dual-pulse pump-probe scheme. The latter, relative to the former, reveals significant degradation of crystal hit rate, diffraction resolution and data quality. Crystal structures extracted from the two data sets also differ. Since our pump-probe attributes were chosen to emulate EuXFEL operation at its 4.5 MHz maximum pulse rate, this prompts concern about such data collection.


Asunto(s)
Hemoglobinas/química , Hemoglobinas/efectos de la radiación , Inyecciones a Chorro/métodos , Rayos Láser , Cristalografía por Rayos X , Electrones , Humanos , Inyecciones a Chorro/instrumentación , Técnicas de Sonda Molecular , Rayos X
6.
Phys Rev Lett ; 124(13): 134801, 2020 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-32302180

RESUMEN

Microbunching instability (MBI) driven by beam collective effects is known to be detrimental to high-brightness storage rings, linacs, and free-electron lasers (FELs). One known way to suppress this instability is to induce a small amount of energy spread to an electron beam by a laser heater. The distribution of the induced energy spread greatly affects MBI suppression and can be controlled by shaping the transverse profile of the heater laser. Here, we present the first experimental demonstration of effective MBI suppression using a LG_{01} transverse laser mode and compare the improved results with respect to traditional Gaussian transverse laser mode at the Linac Coherent Light Source. The effects on MBI suppression are characterized by multiple downstream measurements, including longitudinal phase space analysis and coherent radiation spectroscopy. We also discuss the role of LG_{01} shaping in soft x-ray self-seeded FEL emission, one of the most advanced operation modes of a FEL for which controlled suppression of MBI is critical.

7.
Sci Rep ; 10(1): 5961, 2020 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-32249769

RESUMEN

One of the key challenges in scientific researches based on free-electron lasers (FELs) is the characterization of the coherence time of the ultra-fast hard x-ray pulse, which fundamentally influences the interaction process between x-rays and materials. Conventional optical methods, based on autocorrelation, are very difficult to realize due to the lack of mirrors. Here, we experimentally demonstrate a novel method which yields a coherence time of 174.7 attoseconds for the 6.92 keV FEL pulses at the Linac Coherent Light Source. In our experiment, a phase shifter is adopted to control the cross-correlation between x-ray and microbunched electrons. This approach provides critical diagnostics for the temporal coherence of x-ray FELs and is universal for general machine parameters; applicable for wide range of photon energy, radiation brightness, repetition rate and FEL pulse duration.

8.
Nat Commun ; 11(1): 1814, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32286284

RESUMEN

X-ray free-electron lasers (XFELs) enable crystallographic structure determination beyond the limitations imposed upon synchrotron measurements by radiation damage. The need for very short XFEL pulses is relieved through gating of Bragg diffraction by loss of crystalline order as damage progresses, but not if ionization events are spatially non-uniform due to underlying elemental distributions, as in biological samples. Indeed, correlated movements of iron and sulfur ions were observed in XFEL-irradiated ferredoxin microcrystals using unusually long pulses of 80 fs. Here, we report a femtosecond time-resolved X-ray pump/X-ray probe experiment on protein nanocrystals. We observe changes in the protein backbone and aromatic residues as well as disulfide bridges. Simulations show that the latter's correlated structural dynamics are much slower than expected for the predicted high atomic charge states due to significant impact of ion caging and plasma electron screening. This indicates that dense-environment effects can strongly affect local radiation damage-induced structural dynamics.


Asunto(s)
Proteínas Bacterianas/química , Electrones , Rayos Láser , Disulfuros/química , Azufre/química , Rayos X
9.
J Synchrotron Radiat ; 26(Pt 3): 635-646, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-31074426

RESUMEN

The feasibility of generating X-ray pulses in the 4-8 keV fundamental photon energy range with 0.65 TW peak power, 15 fs pulse duration and 9 × 10-5 bandwidth using the LCLS-II copper linac and hard X-ray (HXR) undulator is shown. In addition, third-harmonic pulses with 8-12 GW peak power and narrow bandwidth are also generated. High-power and small-bandwidth X-rays are obtained using two electron bunches separated by about 1 ns, one to generate a high-power seed signal, the other to amplify it through the process of the HXR undulator tapering. The bunch delay is compensated by delaying the seed pulse with a four-crystal monochromator. The high-power seed leads to higher output power and better spectral properties, with more than 94% of the X-ray power within the near-transform-limited bandwidth. Some of the experiments made possible by X-ray pulses with these characteristics are discussed, such as single-particle imaging and high-field physics.

10.
J Synchrotron Radiat ; 25(Pt 3): 642-649, 2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29714175

RESUMEN

The recent demonstration of the `nanosecond double-bunch' operation mode, i.e. two X-ray pulses separated in time between 0.35 and hundreds of nanoseconds and by increments of 0.35 ns, offers new opportunities to investigate ultrafast dynamics in diverse systems of interest. However, in order to reach its full potential, this mode of operation requires the precise characterization of the intensity of each X-ray pulse within each pulse pair for any time separation. Here, a transmissive single-shot diagnostic that achieves this goal for time separations larger than 0.7 ns with a precision better than 5% is presented. It also provides real-time monitoring feedback to help tune the accelerator parameters to deliver double pulse intensity distributions optimized for specific experimental goals.

11.
Phys Rev Lett ; 120(13): 133203, 2018 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-29694162

RESUMEN

We report the observation and analysis of the gain curve of amplified Kα x-ray emission from solutions of Mn(II) and Mn(VII) complexes using an x-ray free electron laser to create the 1s core-hole population inversion. We find spectra at amplification levels extending over 4 orders of magnitude until saturation. We observe bandwidths below the Mn 1s core-hole lifetime broadening in the onset of the stimulated emission. In the exponential amplification regime the resolution corrected spectral width of ∼1.7 eV FWHM is constant over 3 orders of magnitude, pointing to the buildup of transform limited pulses of ∼1 fs duration. Driving the amplification into saturation leads to broadening and a shift of the line. Importantly, the chemical sensitivity of the stimulated x-ray emission to the Mn oxidation state is preserved at power densities of ∼10^{20} W/cm^{2} for the incoming x-ray pulses. Differences in signal sensitivity and spectral information compared to conventional (spontaneous) x-ray emission spectroscopy are discussed. Our findings build a baseline for nonlinear x-ray spectroscopy for a wide range of transition metal complexes in inorganic chemistry, catalysis, and materials science.

12.
Phys Rev Lett ; 120(1): 014801, 2018 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-29350964

RESUMEN

X-ray free-electron lasers combine a high pulse power, short pulse length, narrow bandwidth, and high degree of transverse coherence. Any increase in the photon pulse power, while shortening the pulse length, will further push the frontier on several key x-ray free-electron laser applications including single-molecule imaging and novel nonlinear x-ray methods. This Letter shows experimental results at the Linac Coherent Light Source raising its maximum power to more than 300% of the current limit while reducing the photon pulse length to 10 fs. This was achieved by minimizing residual transverse-longitudinal centroid beam offsets and beam yaw and by correcting the dispersion when operating over 6 kA peak current with a longitudinally shaped beam.

13.
J Phys Chem Lett ; 7(11): 2055-62, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-27182751

RESUMEN

Most experimental studies of cavitation in liquid water at negative pressures reported cavitation at tensions significantly smaller than those expected for homogeneous nucleation, suggesting that achievable tensions are limited by heterogeneous cavitation. We generated tension pulses with nanosecond rise times in water by reflecting cylindrical shock waves, produced by X-ray laser pulses, at the internal surface of drops of water. Depending on the X-ray pulse energy, a range of cavitation phenomena occurred, including the rupture and detachment, or spallation, of thin liquid layers at the surface of the drop. When spallation occurred, we evaluated that negative pressures below -100 MPa were reached in the drops. We model the negative pressures from shock reflection experiments using a nucleation-and-growth model that explains how rapid decompression could outrun heterogeneous cavitation in water, and enable the study of stretched water close to homogeneous cavitation pressures.

14.
Nature ; 445(7129): 741-4, 2007 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-17301787

RESUMEN

The energy frontier of particle physics is several trillion electron volts, but colliders capable of reaching this regime (such as the Large Hadron Collider and the International Linear Collider) are costly and time-consuming to build; it is therefore important to explore new methods of accelerating particles to high energies. Plasma-based accelerators are particularly attractive because they are capable of producing accelerating fields that are orders of magnitude larger than those used in conventional colliders. In these accelerators, a drive beam (either laser or particle) produces a plasma wave (wakefield) that accelerates charged particles. The ultimate utility of plasma accelerators will depend on sustaining ultrahigh accelerating fields over a substantial length to achieve a significant energy gain. Here we show that an energy gain of more than 42 GeV is achieved in a plasma wakefield accelerator of 85 cm length, driven by a 42 GeV electron beam at the Stanford Linear Accelerator Center (SLAC). The results are in excellent agreement with the predictions of three-dimensional particle-in-cell simulations. Most of the beam electrons lose energy to the plasma wave, but some electrons in the back of the same beam pulse are accelerated with a field of approximately 52 GV m(-1). This effectively doubles their energy, producing the energy gain of the 3-km-long SLAC accelerator in less than a metre for a small fraction of the electrons in the injected bunch. This is an important step towards demonstrating the viability of plasma accelerators for high-energy physics applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...