Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 298
Filtrar
1.
CNS Neurosci Ther ; 30(6): e14814, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38887858

RESUMEN

AIMS: Alzheimer's disease (AD) is a devastating dementia characterized by extracellular amyloid-ß (Aß) protein aggregates and intracellular tau protein deposition. Clinically available drugs mainly target acetylcholinesterase (AChE) and indirectly sustain cholinergic neuronal tonus. Butyrylcholinesterase (BChE) also controls acetylcholine (ACh) turnover and is involved in the formation of Aß aggregates and senile plaques. UW-MD-95 is a novel carbamate-based compound acting as a potent pseudo-irreversible BChE inhibitor, with high selectivity versus AChE, and showing promising protective potentials in AD. METHODS: We characterized the neuroprotective activity of UW-MD-95 in mice treated intracerebroventricularly with oligomerized Aß25-35 peptide using behavioral, biochemical, and immunohistochemical approaches. RESULTS: When injected acutely 30 min before the behavioral tests (spontaneous alternation in the Y-maze, object recognition, or passive avoidance), UW-MD-95 (0.3-3 mg/kg) showed anti-amnesic effects in Aß25-35-treated mice. When injected once a day over 7 days, it prevented Aß25-35-induced memory deficits. This effect was lost in BChE knockout mice. Moreover, the compound prevented Aß25-35-induced oxidative stress (assessed by lipid peroxidation or cytochrome c release), neuroinflammation (IL-6 and TNFα levels or GFAP and IBA1 immunoreactivity) in the hippocampus and cortex, and apoptosis (Bax level). Moreover, UW-MD-95 significantly reduced the increase in soluble Aß1-42 level in the hippocampus induced by Aß25-35. CONCLUSION: UW-MD-95 appeared as a potent neuroprotective compound in the Aß25-35 model of AD, with potentially an impact on Aß1-42 accumulation that could suggest a novel mechanism of neuroprotection.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Butirilcolinesterasa , Inhibidores de la Colinesterasa , Modelos Animales de Enfermedad , Fármacos Neuroprotectores , Fragmentos de Péptidos , Animales , Fármacos Neuroprotectores/farmacología , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/toxicidad , Ratones , Fragmentos de Péptidos/toxicidad , Masculino , Inhibidores de la Colinesterasa/farmacología , Butirilcolinesterasa/metabolismo , Ratones Endogámicos C57BL , Aprendizaje por Laberinto/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Estrés Oxidativo/efectos de los fármacos
2.
J Med Chem ; 67(13): 10710-10742, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38897928

RESUMEN

Upon infection by an intracellular pathogen, host cells activate apoptotic pathways to limit pathogen replication. Consequently, efficient proliferation of the obligate intracellular pathogen Chlamydia trachomatis, a major cause of trachoma and sexually transmitted diseases, depends on the suppression of host cell apoptosis. C. trachomatis secretes deubiquitinase ChlaDUB1 into the host cell, leading among other interactions to the stabilization of antiapoptotic proteins and, thus, suppression of host cell apoptosis. Targeting the bacterial effector protein may, therefore, lead to new therapeutic possibilities. To explore the active site of ChlaDUB1, an iterative cycle of computational docking, synthesis, and enzymatic screening was applied with the aim of lead structure development. Hereby, covalent inhibitors were developed, which show enhanced inhibition with a 22-fold increase in IC50 values compared to previous work. Comprehensive insights into the binding prerequisites to ChlaDUB1 are provided, establishing the foundation for an additional specific antichlamydial therapy by small molecules.


Asunto(s)
Chlamydia trachomatis , Diseño de Fármacos , Chlamydia trachomatis/efectos de los fármacos , Chlamydia trachomatis/enzimología , Relación Estructura-Actividad , Simulación del Acoplamiento Molecular , Acetiltransferasas/antagonistas & inhibidores , Acetiltransferasas/metabolismo , Humanos , Antibacterianos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Enzimas Desubicuitinizantes/antagonistas & inhibidores , Enzimas Desubicuitinizantes/metabolismo , Estructura Molecular , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo
3.
Reprod Toxicol ; : 108627, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38823463

RESUMEN

In the recent paper by Lee et al. 1 reporting reproductive toxicity testing of BVN008, a newly developed tetanus, diphtheria, and acellular pertussis vaccine, the statement is made "BVN008 is a booster vaccine identical to the current Tdap vaccines, Boostrix (GSK) and Adacel (Sanofi)." However, as the authors report, the acellular pertussis portion of BVN008 was provided by BIKEN (Japan). The composition of the BIKEN acellular pertussis product differs in important ways from the compositions of the acellular pertussis components of Boostrix and Adacel.2 Accordingly, the statement cited above is incorrect. A more appropriate statement might have been, "BVN008 is a booster vaccine similar in concept to the current Tdap vaccines, Boostrix (GSK) and Adacel (Sanofi)."

4.
Acad Pediatr ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38609015

RESUMEN

OBJECTIVE: Provide an in-depth and psychometrically rigorous profile of the emotional well-being and sleep-related health of family caregivers of children with medical complexity (CMC). METHODS: Cross-sectional survey study of family caregivers of CMC receiving care from a pediatric complex care center between May 2021 and March 2022. Patient Reported Outcomes Measurement Information System Short-Forms (PROMIS-SF) assessed global mental health, emotional distress (anxiety, depression, anger), psychological strengths (self-efficacy, emotional regulation, meaning and purpose), and sleep-related health (fatigue, sleep-related impairment). Student's t-tests compared the sample's mean T-scores to US population norms. Pearson's correlation coefficient (ρ) examined associations between measures of psychological strengths and emotional distress. Unadjusted linear regression analyses explored relationships between well-being outcomes and child and caregiver characteristics. RESULTS: Compared to US population norms, caregivers of CMC (n = 143) reported significantly lower global mental health and emotional regulation ability as well as elevated symptoms of anxiety, depression, anger, fatigue, and sleep-related impairment (all P < .01). Whereas participants reported a significantly higher sense of meaning and purpose (P < .05), levels of self-efficacy were not significantly different from population norms. We observed moderate-to-strong inverse relationships between psychological strengths and emotional distress (ρ range, -0.39 to -0.69); with the strongest inverse associations found between emotional regulation ability and emotional distress. In exploratory analyses, caregiver race and ethnicity, socioeconomic status, and child health insurance type were significantly associated with caregiver well-being. CONCLUSION: Family caregivers of CMC report poor well-being, most notably, increased symptoms of anxiety and reduced global mental health and sleep-related health.

5.
Biomolecules ; 14(4)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38672497

RESUMEN

BACKGROUND: In military flight operations, during flights, fighter pilots constantly work under hyperoxic breathing conditions with supplemental oxygen in varying hypobaric environments. These conditions are suspected to cause oxidative stress to neuronal organ tissues. For civilian flight operations, the Federal Aviation Administration (FAA) also recommends supplemental oxygen for flying under hypobaric conditions equivalent to higher than 3048 m altitude, and has made it mandatory for conditions equivalent to more than 3657 m altitude. AIM: We hypothesized that hypobaric-hyperoxic civilian commercial and private flight conditions with supplemental oxygen in a flight simulation in a hypobaric chamber at 2500 m and 4500 m equivalent altitude would cause significant oxidative stress in healthy individuals. METHODS: Twelve healthy, COVID-19-vaccinated (third portion of vaccination 15 months before study onset) subjects (six male, six female, mean age 35.7 years) from a larger cohort were selected to perform a 3 h flight simulation in a hypobaric chamber with increasing supplemental oxygen levels (35%, 50%, 60%, and 100% fraction of inspired oxygen, FiO2, via venturi valve-equipped face mask), switching back and forth between simulated altitudes of 2500 m and 4500 m. Arterial blood pressure and oxygen saturation were constantly measured via radial catheter and blood samples for blood gases taken from the catheter at each altitude and oxygen level. Additional blood samples from the arterial catheter at baseline and 60% oxygen at both altitudes were centrifuged inside the chamber and the serum was frozen instantly at -21 °C for later analysis of the oxidative stress markers malondialdehyde low-density lipoprotein (M-LDL) and glutathione-peroxidase 1 (GPX1) via the ELISA test. RESULTS: Eleven subjects finished the study without adverse events. Whereas the partial pressure of oxygen (PO2) levels increased in the mean with increasing oxygen levels from baseline 96.2 mm mercury (mmHg) to 160.9 mmHg at 2500 m altitude and 60% FiO2 and 113.2 mmHg at 4500 m altitude and 60% FiO2, there was no significant increase in both oxidative markers from baseline to 60% FiO2 at these simulated altitudes. Some individuals had a slight increase, whereas some showed no increase at all or even a slight decrease. A moderate correlation (Pearson correlation coefficient 0.55) existed between subject age and glutathione peroxidase levels at 60% FiO2 at 4500 m altitude. CONCLUSION: Supplemental oxygen of 60% FiO2 in a flight simulation, compared to flying in cabin pressure levels equivalent to 2500 m-4500 m altitude, does not lead to a significant increase or decrease in the oxidative stress markers M-LDL and GPX1 in the serum of arterial blood.


Asunto(s)
Altitud , Estrés Oxidativo , Oxígeno , Humanos , Masculino , Femenino , Adulto , Oxígeno/metabolismo , COVID-19 , Hiperoxia/sangre , Aeronaves , Oxigenoterapia Hiperbárica
6.
J Med Chem ; 67(8): 6327-6343, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38570909

RESUMEN

The interleukin-8 receptor beta (CXCR2) is a highly promising target for molecular imaging of inflammation and inflammatory diseases. This is due to its almost exclusive expression on neutrophils. Modified fluorinated ligands were designed based on a squaramide template, with different modification sites and synthetic strategies explored. Promising candidates were then tested for affinity to CXCR2 in a NanoBRET competition assay, resulting in tracer candidate 16b. As direct 18F-labeling using established tosyl chemistry did not yield the expected radiotracer, an indirect labeling approach was developed. The radiotracer [18F]16b was obtained with a radiochemical yield of 15% using tert-butyl (S)-3-(tosyloxy)pyrrolidine carboxylate and a pentafluorophenol ester. The subsequent time-dependent uptake of [18F]16b in CXCR2-negative and CXCR2-overexpressing human embryonic kidney cells confirmed the radiotracer's specificity. Further studies with human neutrophils revealed its diagnostic potential for functional imaging of neutrophils.


Asunto(s)
Radioisótopos de Flúor , Neutrófilos , Tomografía de Emisión de Positrones , Radiofármacos , Receptores de Interleucina-8B , Receptores de Interleucina-8B/metabolismo , Humanos , Radioisótopos de Flúor/química , Neutrófilos/metabolismo , Tomografía de Emisión de Positrones/métodos , Radiofármacos/química , Radiofármacos/síntesis química , Radiofármacos/farmacocinética , Células HEK293
7.
Chem Sci ; 15(14): 5360-5367, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38577348

RESUMEN

Benzimidazole heterocycles are of great importance in medicinal chemistry due to their applicability to a wide range of pharmacological targets, therefore representing a prototypical "privileged structure". In photopharmacology, azoheteroarene photoswitches have emerged as valuable tools for a variety of applications due to the high tuneability of their photophysical properties. Benzimidazole-based photoswitches could therefore enable the optically-controlled investigation of many pharmacological targets and find application in materials science. Here we report a combined experimental and computational investigation of such arylazobenzimidazoles, which allowed us to identify derivatives with near-quantitative bidirectional photoswitching using visible light and highly tuneable Z-isomer stability. We further demonstrate that arylazobenzimidazoles bearing a free benzimidazole N-H group not only exhibit efficient bidirectional photoswitching, but also excellent thermal Z-isomer stability, contrary to previously reported fast-relaxing Z-isomers of N-H azoheteroarenes. Finally, we describe derivatives which can be reversibly isomerized with cyan and red light, thereby enabling significantly "red-shifted" photocontrol over prior azoheteroarenes. The understanding gained in this study should enable future photopharmacological efforts by employing photoswitches based on the privileged benzimidazole structure.

9.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38542250

RESUMEN

Onboard oxygen-generating systems (OBOGSs) provide increased inspired oxygen (FiO2) to mitigate the risk of neurologic injury in high altitude aviators. OBOGSs can deliver highly variable oxygen concentrations oscillating around a predetermined FiO2 set point, even when the aircraft cabin altitude is relatively stable. Steady-state exposure to 100% FiO2 evokes neurovascular vasoconstriction, diminished cerebral perfusion, and altered electroencephalographic activity. Whether non-steady-state FiO2 exposure leads to similar outcomes is unknown. This study characterized the physiologic responses to steady-state and non-steady-state FiO2 during normobaric and hypobaric environmental pressures emulating cockpit pressures within tactical aircraft. The participants received an indwelling radial arterial catheter while exposed to steady-state or non-steady-state FiO2 levels oscillating ± 15% of prescribed set points in a hypobaric chamber. Steady-state exposure to 21% FiO2 during normobaria produced arterial blood gas values within the anticipated ranges. Exposure to non-steady-state FiO2 led to PaO2 levels higher upon cessation of non-steady-state FiO2 than when measured during steady-state exposure. This pattern was consistent across all FiO2 ranges, at each barometric condition. Prefrontal cortical activation during cognitive testing was lower following exposure to non-steady-state FiO2 >50% and <100% during both normobaria and hypobaria of 494 mmHg. The serum analyte levels (IL-6, IP-10, MCP-1, MDC, IL-15, and VEGF-D) increased 48 h following the exposures. We found non-steady-state FiO2 levels >50% reduced prefrontal cortical brain activation during the cognitive challenge, consistent with an evoked pattern of neurovascular constriction and dilation.


Asunto(s)
Citocinas , Oxígeno , Humanos , Análisis de los Gases de la Sangre , Altitud , Corteza Prefrontal
10.
Chemistry ; 30(11): e202303506, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38212242

RESUMEN

ß2 -adrenergic receptor (ß2 -AR) agonists are used for the treatment of asthma and chronic obstructive pulmonary disease, but also play a role in other complex disorders including cancer, diabetes and heart diseases. As the cellular and molecular mechanisms in various cells and tissues of the ß2 -AR remain vastly elusive, we developed tools for this investigation with high temporal and spatial resolution. Several photoswitchable ß2 -AR agonists with nanomolar activity were synthesized. The most potent agonist for ß2 -AR with reasonable switching is a one-digit nanomolar active, trans-on arylazopyrazole-based adrenaline derivative and comprises valuable photopharmacological properties for further biological studies with high structural accordance to the native ligand adrenaline.


Asunto(s)
Adrenérgicos , Agonistas de Receptores Adrenérgicos beta 2 , Agonistas de Receptores Adrenérgicos beta 2/farmacología , Sondas Moleculares , Receptores Adrenérgicos beta 2/química , Epinefrina/farmacología , Transducción de Señal
11.
ACS Chem Neurosci ; 14(20): 3737-3744, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37792463

RESUMEN

The cannabinoid receptor 2 (CB2R) has high, unexploited therapeutic potential in several central nervous system disorders due to its involvement in neuroinflammatory processes and pathologies like neurodegeneration. Dualsteric/bitopic ligands are currently developed to achieve receptor subtype selectivity and biased signaling. To obtain a molecular tool compound with photoswitchable potential dualsteric properties, we applied two different approaches to link a positive allosteric modulator with an orthosteric agonist via a photochromic unit. We characterized the photophysical properties of all compounds and determined efficacy in internalization, calcium mobilization, and BRET studies. We report the first potentially dualsteric photoswitchable ligand for studying molecular mechanisms of CB2R-associated pathologies. Compound 17-para is a submicromolar "cis-on" agonist with >10-fold higher potency compared to its trans photoisomer and allows high spatiotemporal control of CB2R activation.


Asunto(s)
Cannabinoides , Transducción de Señal , Receptores de Cannabinoides , Ligandos , Sitios de Unión , Cannabinoides/farmacología , Receptor Cannabinoide CB2
12.
Angew Chem Int Ed Engl ; 62(51): e202311181, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37823736

RESUMEN

To interrogate neural circuits and crack their codes, in vivo brain activity imaging must be combined with spatiotemporally precise stimulation in three dimensions using genetic or pharmacological specificity. This challenge requires deep penetration and focusing as provided by infrared light and multiphoton excitation, and has promoted two-photon photopharmacology and optogenetics. However, three-photon brain stimulation in vivo remains to be demonstrated. We report the regulation of neuronal activity in zebrafish larvae by three-photon excitation of a photoswitchable muscarinic agonist at 50 pM, a billion-fold lower concentration than used for uncaging, and with mid-infrared light of 1560 nm, the longest reported photoswitch wavelength. Robust, physiologically relevant photoresponses allow modulating brain activity in wild-type animals with spatiotemporal and pharmacological precision. Computational calculations predict that azobenzene-based ligands have high three-photon absorption cross-section and can be used directly with pulsed infrared light. The expansion of three-photon pharmacology will deeply impact basic neurobiology and neuromodulation phototherapies.


Asunto(s)
Fotones , Pez Cebra , Animales , Rayos Infrarrojos , Ligandos
13.
Angew Chem Int Ed Engl ; 62(49): e202306176, 2023 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-37269130

RESUMEN

The cannabinoid 2 receptor (CB2 R) has high therapeutic potential for multiple pathogenic processes, such as neuroinflammation. Pathway-selective ligands are needed to overcome the lack of clinical success and to elucidate correlations between pathways and their respective therapeutic effects. Herein, we report the design and synthesis of a photoswitchable scaffold based on the privileged structure of benzimidazole and its application as a functionally selective CB2 R "efficacy-switch". Benzimidazole azo-arenes offer huge potential for the broad extension of photopharmacology to a wide range of optically addressable biological targets. We used this scaffold to develop compound 10 d, a "trans-on" agonist, which serves as a molecular probe to study the ß-arrestin2 (ßarr2) pathway at CB2 R. ßΑrr2 bias was observed in CB2 R internalization and ßarr2 recruitment, while no activation occurred when looking at Gα16 or mini-Gαi . Overall, compound 10 d is the first light-dependent functionally selective agonist to investigate the complex mechanisms of CB2 R-ßarr2 dependent endocytosis.


Asunto(s)
Agonistas de Receptores de Cannabinoides , Cannabinoides , Arrestina beta 2/metabolismo , Cannabinoides/farmacología , Bencimidazoles/química
14.
J Med Chem ; 66(9): 6414-6435, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37127287

RESUMEN

We present the synthesis and characterization of merged human butyrylcholinesterase (hBChE) inhibitor/cannabinoid receptor 2 (hCB2R) ligands for the treatment of neurodegeneration. In total, 15 benzimidazole carbamates were synthesized and tested for their inhibition of human cholinesterases, also with regard to their pseudoirreversible binding mode and affinity toward both cannabinoid receptors in radioligand binding studies. After evaluation in a calcium mobilization assay as well as a ß-arrestin 2 (ßarr2) recruitment assay, two compounds with balanced activities on both targets were tested for their immunomodulatory effect on microglia activation and regarding their pharmacokinetic properties and blood-brain barrier penetration. Compound 15d, containing a dimethyl carbamate motif, was further evaluated in vivo, showing prevention of Aß25-35-induced learning impairments in a pharmacological mouse model of Alzheimer's disease for both short- and long-term memory responses. Additional combination studies proved a synergic effect of BChE inhibition and CB2R activation in vivo.


Asunto(s)
Enfermedad de Alzheimer , Butirilcolinesterasa , Animales , Ratones , Humanos , Butirilcolinesterasa/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Neuroprotección , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/uso terapéutico , Inhibidores de la Colinesterasa/química , Receptores de Cannabinoides , Acetilcolinesterasa/metabolismo , Relación Estructura-Actividad
16.
Pharmaceutics ; 15(2)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36840011

RESUMEN

PURPOSE: A new PET radiotracer 18F-AF78 showing great potential for clinical application has been reported recently. It belongs to a new generation of phenethylguanidine-based norepinephrine transporter (NET)-targeting radiotracers. Although many efforts have been made to develop NET inhibitors as antidepressants, systemic investigations of the structure-activity relationships (SARs) of NET-targeting radiotracers have rarely been performed. METHODS: Without changing the phenethylguanidine pharmacophore and 3-fluoropropyl moiety that is crucial for easy labeling, six new analogs of 18F-AF78 with different meta-substituents on the benzene-ring were synthesized and evaluated in a competitive cellular uptake assay and in in vivo animal experiments in rats. Computational modeling of these tracers was established to quantitatively rationalize the interaction between the radiotracers and NET. RESULTS: Using non-radiolabeled reference compounds, a competitive cellular uptake assay showed a decrease in NET-transporting affinity from meta-fluorine to iodine (0.42 and 6.51 µM, respectively), with meta-OH being the least active (22.67 µM). Furthermore, in vivo animal studies with radioisotopes showed that heart-to-blood ratios agreed with the cellular experiments, with AF78(F) exhibiting the highest cardiac uptake. This result correlates positively with the electronegativity rather than the atomic radius of the meta-substituent. Computational modeling studies revealed a crucial influence of halogen substituents on the radiotracer-NET interaction, whereby a T-shaped π-π stacking interaction between the benzene-ring of the tracer and the amino acid residues surrounding the NET binding site made major contributions to the different affinities, in accordance with the pharmacological data. CONCLUSION: The SARs were characterized by in vitro and in vivo evaluation, and computational modeling quantitatively rationalized the interaction between radiotracers and the NET binding site. These findings pave the way for further evaluation in different species and underline the potential of AF78(F) for clinical application, e.g., cardiac innervation imaging or molecular imaging of neuroendocrine tumors.

17.
J Orthop Res ; 41(7): 1531-1537, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36601654

RESUMEN

Highly cross-linked polyethylene (HXLPE) for total hip arthroplasty was developed to improve wear resistance in vivo and associated complications in comparison to ultrahigh molecular weight polyethylene. This material typically goes through various free-radical stabilization techniques by remelting, single-annealing, or sequentially annealing the polyethylene to improve in vivo oxidation and wear properties. The purpose of this study is to determine if there is evidence of subsurface microhardness changes in retrieved HXLPE liner at the rim and articular subsurface after extended in vivo time that could be associated with oxidation and its effects on mechanical properties and implant integrity. Retrieved HXLPE liners were chosen based on peak subsurface Fourier transform infrared spectroscopy oxidation values. Each was mechanically tested for subsurface microhardness at both the rim and articular surface using a validated microindentation technique. Rim testing demonstrated a decrease in mechanical integrity that corresponded to higher subsurface oxidation values regardless of the free-radical stabilization technique. At the articular surface, a decrease in mechanical integrity was observed near the surface corresponding to peak oxidation and Vicker's hardness, which decreased with increasing depths. This was found in all groups, with the exception of the single-annealed liners, which demonstrated decreased mechanical integrity trends at greater depths between 1.0 and 2.0 mm. Our results suggest that subsurface mechanical properties do change in vivo for certain implants. Though it is likely that the mechanical failures are multifactorial, we have shown that mechanical property degradation of HXLPE liners does occur with long-term in vivo exposure and should be considered a possible risk factor.


Asunto(s)
Artroplastia de Reemplazo de Cadera , Prótesis de Cadera , Humanos , Polietileno/química , Falla de Prótesis , Reoperación , Diseño de Prótesis
18.
Chembiochem ; 24(5): e202200570, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36567253

RESUMEN

The incorporation of photoswitches into the molecular structure of peptides and proteins enables their dynamic photocontrol in complex biological systems. Here, a perfluorinated azobenzene derivative triggered by amber light was site-specifically conjugated to cysteines in a helical peptide by perfluoroarylation chemistry. In response to the photoisomerization (trans→cis) of the conjugated azobenzene with amber light, the secondary structure of the peptide was modulated from a disorganized into an amphiphilic helical structure.


Asunto(s)
Ámbar , Péptidos , Péptidos/química , Proteínas , Estructura Secundaria de Proteína , Compuestos Azo/química , Luz
19.
Antioxidants (Basel) ; 13(1)2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38247469

RESUMEN

Cinnamic acid, ferulic acid, and the flavonoids quercetin and taxifolin (dihydroquercetin) are naturally occurring compounds found in plants. They are often referred to as polyphenols and are known, among others, for their pharmacological effects supporting health through the inhibition of aging processes and oxidative stress. To improve their bioavailability, pharmacological activities, and safety, the creation of novel flavonoid-phenolic acid hybrids is an area of active research. Previous work showed that such hybridization products of phenolic acids and flavonoids enhanced the resilience of neuronal cells against oxidative stress in vitro, and attenuated cognitive impairment in a mouse model of Alzheimer's disease (AD) in vivo. Notably, the therapeutic effects of the hybrid compounds we obtained were more pronounced than the protective activities of the respective individual components. The underlying mechanisms mediated by the flavonoid-phenolic acid hybrids, however, remained unclear and may differ from the signaling pathways activated by the originating structures of the respective individual phenolic acids or flavonoids. In this study, we characterized the effects of four previously described potent flavonoid-phenolic acid hybrids in models of oxidative cell death through ferroptosis. Ferroptosis is a type of iron-dependent regulated cell death characterized by lipid peroxidation and mitochondrial ROS generation and has been linked to neurodegenerative conditions. In models of ferroptosis induced by erastin or RSL3, we analyzed mitochondrial (lipid) peroxidation, mitochondrial membrane integrity, and Ca2+ regulation. Our results demonstrate the strong protective effects of the hybrid compounds against ROS formation in the cytosol and mitochondria. Importantly, these protective effects against ferroptosis were not mediated by radical scavenging activities of the phenolic hybrid compounds but through inhibition of mitochondrial complex I activity and reduced mitochondrial respiration. Our data highlight the effects of flavonoid-phenolic acid hybrids on mitochondrial metabolism and further important mitochondrial parameters that collectively determine the health and functionality of mitochondria with a high impact on the integrity and survival of the neuronal cells.

20.
RSC Med Chem ; 13(8): 944-954, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-36092149

RESUMEN

As levels of acetylcholinesterase (AChE) decrease while levels of butyrylcholinesterase (BChE) increase in later stages of Alzheimer's disease (AD), BChE stands out as a promising target for treatment of AD. Therefore, several benzimidazole-carbamates were designed based on docking studies to inhibit BChE selectively over AChE, while retaining a reasonable solubility. Synthesized molecules exhibit IC50 values from 2.4 µM down to 3.7 nM with an overall highly hBChE-selective profile of the designed compound class. After evaluation of potential neurotoxicity, the most promising compound was further investigated in vivo. Compound 11d attenuates Aß25-35-induced learning impairments in both spontaneous alternation and passive avoidance responses at a very low dosage of 0.03 mg kg-1, proving selective BChE inhibition to lead to effective neuroprotectivity in AD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...