Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
IMA Fungus ; 15(1): 16, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38915080

RESUMEN

Fomes weberianus Bres. & Henn. ex Sacc. is currently the basionym of two very distinct polypores (Basidiomycota), Ganoderma weberianum (Polyporales) and Phylloporia weberiana (Hymenochaetales). This fact has led to almost fifty years of taxonomic confusion. Fomes weberianus was first lectotypified by Steyaert, who accepted the species as G. weberianum. However, studies of Weber's original material in B, duplicate material in S, the protologue, and early interpretations of the name have shown that Steyaert's choice conflicts with the protologue and early interpretations, and that his interpretation as a species of Ganoderma is erroneous. A new lectotype was designated and the species was re-described under the correct interpretation Phylloporia weberiana.

2.
Fitoterapia ; 175: 105904, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38508498

RESUMEN

Three novel derivatives of microporenic acid, microporenic acids H-J, were identified from submerged cultures of a Lentinus species obtained from a basidiome collected during a field trip in the tropical rainforest in Western Kenya. Their structures were elucidated via HR-ESIMS spectra and 1D/2D NMR spectroscopic analyses, as well as by comparison with known derivatives. Applying biofilm assays based on crystal violet staining and confocal microscopy, two of these compounds, microporenic acids H and I, demonstrated the ability to inhibit biofilm formation of the opportunistic pathogen Staphylococcus aureus. Thereby, they were effective in a concentration range that did not affect planktonic growth. Additionally, microporenic acid I enhanced the anti-biofilm activity of the antibiotics vancomycin and gentamicin when used in combination. This opens up possibilities for the use of these compounds in combination therapy to prevent the formation of S. aureus biofilms.


Asunto(s)
Antibacterianos , Biopelículas , Lentinula , Staphylococcus aureus , Biopelículas/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/aislamiento & purificación , Estructura Molecular , Lentinula/química , Kenia , Pruebas de Sensibilidad Microbiana , Vancomicina/farmacología , Gentamicinas/farmacología
3.
Antonie Van Leeuwenhoek ; 117(1): 53, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38483617

RESUMEN

The genus Sporendonema (Gymnoascaceae, Onygenales) was introduced in 1827 with the type species S. casei for a red mould on cheese. Cheese is a consistent niche for this species. Sphaerosporium equinum is another species classified in Gymnoascaceae and has also been reported from cheese. Recently, other habitats have been reported for both Sporendonema casei and Sphaerosporium equinum. The present study aimed to investigate the taxonomy of Sporendonema and Sphaerosporium, as well as a close neighbour, Arachniotus. Two strains of Hormiscium aurantiacum, another related cheese-associated species were also included in the analyses. Strains were evaluated in terms of macro- and micromorphology, physiology including salt tolerance, growth rate at different temperatures, casein degradation, cellulase activity, lipolytic activity, and multi-locus phylogeny with sequences of the nuclear ribosomal internal transcribed spacer region, the D1-D2 region of the large subunit and partial ß-tubulin locus sequences. The results showed that the analysed species were congeneric, and the generic names Arachniotus and Sphaerosporium should be reduced to the synonymy of Sporendonema. Therefore, four new combinations as well as one lectotype and one epitype were designated in Sporendonema. Two strains attributed to Sphaerosporium equinum from substrates other than cheese were found to be phylogenetically and morphologically deviant and were introduced as a new species named Sporendonema isthmoides.


Asunto(s)
Ascomicetos , Filogenia , ADN Espaciador Ribosómico
5.
J Nat Prod ; 86(11): 2457-2467, 2023 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-37910033

RESUMEN

Abundisporin A (1), together with seven previously undescribed drimane sesquiterpenes named abundisporins B-H (2-8), were isolated from a polypore, Abundisporus violaceus MUCL 56355 (Polyporaceae), collected in Kenya. Chemical structures of the isolated compounds were elucidated based on exhaustive 1D and 2D NMR spectroscopic measurements and supported by HRESIMS data. The absolute configurations of the isolated compounds were determined by using Mosher's method for 1-4 and TDDFT-ECD calculations for 4 and 5-8. None of the isolated compounds exhibited significant activities in either antimicrobial or cytotoxicity assays. Notably, all of the tested compounds demonstrated neurotrophic effects, with 1 and 6 significantly increasing outgrowth of neurites when treated with 5 ng/mL NGF.


Asunto(s)
Polyporaceae , Sesquiterpenos , Estructura Molecular , Sesquiterpenos/química , Polyporaceae/química , Proyección Neuronal
6.
Beilstein J Org Chem ; 19: 1161-1169, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37560136

RESUMEN

Chemical exploration of solid-state cultures of the polypore Fomitopsis carnea afforded two new C31 lanostane-type triterpenoid glycosides, forpiniosides B (1) and C (2) together with two known derivatives, namely 3-epipachymic acid (3) and (3α,25S)-3-O-malonyl-23-oxolanost-8,24(31)-dien-26-oic acid (4). The structures of the isolated compounds were established based on HRESIMS and extensive 1D and 2D NMR experiments. All the isolated compounds were assessed for their antimicrobial and cytotoxic activities. Among the tested compounds, forpinioside B (1) exhibited significant antimicrobial activity against Staphylococcus aureus and Bacillus subtilis at MIC values comparable to gentamycin and oxytetracycline (positive controls), respectively.

7.
MycoKeys ; 95: 131-162, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37251992

RESUMEN

During a mycological survey of the Democratic Republic of the Congo, a fungal specimen that morphologically resembled the American species Hypoxylonpapillatum was encountered. A polyphasic approach including morphological and chemotaxonomic together with a multigene phylogenetic study (ITS, LSU, tub2, and rpb2) of Hypoxylon spp. and representatives of related genera revealed that this strain represents a new species of the Hypoxylaceae. However, the multi-locus phylogenetic inference indicated that the new fungus clustered with H.papillatum in a separate clade from the other species of Hypoxylon. Studies by ultrahigh performance liquid chromatography coupled to diode array detection and ion mobility tandem mass spectrometry (UHPLC-DAD-IM-MS/MS) were carried out on the stromatal extracts. In particular, the MS/MS spectra of the major stromatal metabolites of these species indicated the production of hitherto unreported azaphilone pigments with a similar core scaffold to the cohaerin-type metabolites, which are exclusively found in the Hypoxylaceae. Based on these results, the new genus Parahypoxylon is introduced herein. Aside from P.papillatum, the genus also includes P.ruwenzoriensesp. nov., which clustered together with the type species within a basal clade of the Hypoxylaceae together with its sister genus Durotheca.

8.
Molecules ; 28(9)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37175133

RESUMEN

With heimionones A-E (1-5), five new terpenoids were isolated from submerged cultures of Heimiomyces sp. in addition to the previously described compounds hispidin, hypholomin B, and heimiomycins A and B. Planar structures of the metabolites were elucidated by 1D and 2D NMR in addition to HRESIMS data. While ROESY data assigned relative configurations, absolute configurations were determined by the synthesis of MTPA esters of 1, 3, and 5. The [6.3.0] undecane core structure of compounds 3-5 is of the asteriscane-type, however, the scaffold of 1 and 2 with their bicyclo [5.3.0] decane core and germinal methyl substitution is, to our knowledge, unprecedented. Together with several new compounds that were previously isolated from solid cultures of this strain, Heimiomyces sp. showed an exceptionally high chemical diversity of its secondary metabolite profile.


Asunto(s)
Agaricales , Basidiomycota , Sesquiterpenos , Estructura Molecular , Basidiomycota/química , Sesquiterpenos/química , África
9.
J Nat Prod ; 86(2): 390-397, 2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36779910

RESUMEN

New meroterpenoids bis-heimiomycins A-D (1-4) and heimiomycins D and E (5 and 6) were isolated from solid rice cultures of Heimiomyces sp., while new calamene-type sesquiterpenoids heimiocalamene A (7) and B (8) were isolated from shake cultures, respectively. Structures of the metabolites were elucidated by 1D and 2D NMR in addition to HRESIMS data. While relative configurations were assigned by ROESY data, absolute configurations were derived from the structurally related, previously described calamenes, which we herein name heimiocalamenes C-E (9-11). A plausible biosynthetic pathway was proposed for 1-6, with a radical reaction connecting their central para-benzoquinone building block to calamene-sesquiterpenoids. Based on the assumption of a common biosynthesis, we reviewed the structure of the known nitrogen-containing derivative 11, calling the validity of the originally proposed structure into question. Subsequently, the structure of 11 was revised by analysis of HMBC and ROESY NMR data. Only heimiomycin D (5) displayed cytotoxic effects against cell line KB3.1.


Asunto(s)
Agaricales , Basidiomycota , Sesquiterpenos , Estructura Molecular , Basidiomycota/química , Sesquiterpenos/química , África
10.
Int J Mol Sci ; 23(21)2022 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-36362380

RESUMEN

Neurotrophins such as nerve growth factor (ngf) and brain-derived neurotrophic factor (bdnf) play important roles in the central nervous system. They are potential therapeutic drugs for the treatment of neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. In this study, we investigated the neurotrophic properties of triterpenes isolated from fruiting bodies of Laetiporus sulphureus and a mycelial culture of Antrodia sp. MUCL 56049. The structures of the isolated compounds were elucidated based on nuclear magnetic resonance (NMR) spectroscopy in combination with high-resolution electrospray mass spectrometry (HR-ESIMS). The secondary metabolites were tested for neurotrophin (ngf and bdnf) expression levels on human astrocytoma 1321N1 cells. Neurite outgrowth activity using rat pheochromocytoma (PC-12) cells was also determined. Twelve triterpenoids were isolated, of which several potently stimulated the expression of neurotrophic factors, namely, ngf (sulphurenic acid, 15α-dehydroxytrametenolic acid, fomefficinic acid D, and 16α-hydroxyeburicoic acid) and bdnf (sulphurenic acid and 15α-dehydroxytrametenolic acid), respectively. The triterpenes also potentiated ngf-induced neurite outgrowth in PC-12 cells. This is, to the best of our knowledge, the first report on the compound class of lanostanes in direct relation to bdnf and ngf enhancement. These compounds are widespread in medicinal mushrooms; hence, they appear promising as a starting point for the development of drugs and mycopharmaceuticals to combat neurodegenerative diseases. Interestingly, they do not show any pronounced cytotoxicity and may, therefore, be better suited for therapy than many other neurotrophic compounds that were previously reported.


Asunto(s)
Basidiomycota , Enfermedades Neurodegenerativas , Triterpenos , Animales , Ratas , Humanos , Factor de Crecimiento Nervioso/farmacología , Factor de Crecimiento Nervioso/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Triterpenos/farmacología , Triterpenos/química , Madera/metabolismo , Basidiomycota/química
11.
Molecules ; 27(18)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36144704

RESUMEN

Five new drimane-type sesquiterpenoids were isolated from cultures of the tropical basidiomycetes, Perenniporia centrali-africana (originating from Kenya) and Cerrena sp. nov. (originating from Thailand). A new pereniporin A derivative (1), a new drimane-type sesquiterpene lactam (2), and the new 6,7-Dehydro-isodrimenediol (3) were isolated from P. centrali-africana. In parallel, the two new drimane-type sesquiterpene lactams 5 and 6 were isolated together with known isodrimenediol (4) from Cerrena sp. This is the first report of drimane-type sesquiterpene lactams from basidiomycetes. The structures were elucidated based on 1D and 2D nuclear magnetic resonance (NMR) spectroscopic data, in combination with high-resolution electrospray mass spectrometric (HR-ESIMS) data. The compounds were devoid of significant antimicrobial and cytotoxic activities.


Asunto(s)
Basidiomycota , Sesquiterpenos , Basidiomycota/química , Lactamas , Estructura Molecular , Sesquiterpenos Policíclicos , Polyporaceae , Sesquiterpenos/química
12.
Biomolecules ; 12(6)2022 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-35740880

RESUMEN

A mycelial culture of the African basidiomycete Echinochaete cf. brachypora was studied for biologically active secondary metabolites, and four compounds were isolated from its crude extract derived from shake flask fermentations, using preparative high-performance liquid chromatography (HPLC). The pure metabolites were identified using extensive nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry (HR-MS). Aside from the new metabolites 1-methoxyneomarinone (1) and (E)-3-methyl-5-(-12,13,14-trimethylcyclohex-10-en-6-yl)pent-2-enoic acid (4), the known metabolites neomarinone (2) and fumaquinone (4) were obtained. Such compounds had previously only been reported from Actinobacteria but were never isolated from the cultures of a fungus. This observation prompted us to evaluate whether the above metabolites may actually have been produced by an endosymbiontic bacterium that is associated with the basidiomycete. We have indeed been able to characterize bacterial 16S rDNA in the fungal mycelia, and the production of the metabolites stopped when the fungus was sub-cultured on a medium containing antibacterial antibiotics. Therefore, we have found strong evidence that compounds 1-4 are not of fungal origin. However, the endofungal bacterium was shown to belong to the genus Ralstonia, which has never been reported to produce similar metabolites to 1-4. Moreover, we failed to obtain the bacterial strain in pure culture to provide final proof for its identity. In any case, the current report is the first to document that polyporoid Basidiomycota are associated with endosymbionts and constitutes the first report on secondary metabolites from the genus Echinochaete.


Asunto(s)
Basidiomycota , Polyporaceae , Antibacterianos/química , Bacterias/metabolismo , Basidiomycota/química , Hongos/metabolismo , Polyporaceae/metabolismo
13.
J Fungi (Basel) ; 8(3)2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35330216

RESUMEN

Pinus armandii (P. armandii) is extensively abundant in western China and, as a pioneer tree, and prominently influences local ecology. However, pine forests in this region have been significantly damaged by Dendroctonus armandi (D. armandi) infestations, in close association with ophiostomatoid fungi. This study aimed to identify the diversity of ophiostomatoid fungi associated with D. armandi infesting P. armandii in western China. A total of 695 ophiostomatoid fungal strains were isolated from 1040 tissue pieces from D. armandi galleries and 89 adult beetles at four sites. In this study, based on multiloci DNA sequence data, as well as morphological and physiological characteristics, seven species belonging to five genera were identified including three known species, Esteyea vermicola, Graphium pseudormiticum and L. wushanense, two novel taxa, Graphilbum parakesiyea and Ophiostoma shennongense, and an unidentified Ophiostoma sp. 1. A neotype of Leptographium qinlingense. Ophiostoma shennongense was the dominant taxon (78.99%) in the ophiostomatoid community. This study provides a valuable scientific theoretical basis for the occurrence and management of D. armandi in the future.

14.
MycoKeys ; 87: 53-76, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35210922

RESUMEN

Fusarium is one of the most important fungal genera of plant pathogens that affect the cultivation of a wide range of crops. Agricultural losses caused by Fusariumoxysporumf.sp.cubense (Foc) directly affect the income, subsistence, and nourishment of thousands of farmers worldwide. For Viet Nam, predictions on the impact of Foc for the future are dramatic, with an estimated loss in the banana production area of 8% within the next five years and up to 71% within the next 25 years. In the current study, we applied a combined morphological-molecular approach to assess the taxonomic identity and phylogenetic position of the different Foc isolates collected in northern Viet Nam. In addition, we aimed to estimate the proportion of the different Fusarium races infecting bananas in northern Viet Nam. The morphology of the isolates was investigated by growing the collected Fusarium isolates on four distinct nutritious media (PDA, SNA, CLA, and OMA). Molecular phylogenetic relationships were inferred by sequencing partial rpb1, rpb2, and tef1a genes and adding the obtained sequences into a phylogenetic framework. Molecular characterization shows that c. 74% of the Fusarium isolates obtained from infected banana pseudostem tissue belong to F.tardichlamydosporum. Compared to F.tardichlamydosporum, F.odoratissimum accounts for c.10% of the Fusarium wilt in northern Viet Nam, demonstrating that Foc TR4 is not yet a dominant strain in the region. Fusariumcugenangense - considered to cause Race 2 infections among bananas - is only found in c. 10% of the tissue material that was obtained from infected Vietnamese bananas. Additionally, one of the isolates cultured from diseased bananas was phylogenetically not positioned within the F.oxysporum species complex (FOSC), but in contrast, fell within the Fusariumfujikuroi species complex (FFSC). As a result, a possible new pathogen for bananas may have been found. Besides being present on several ABB 'Tay banana', F.tardichlamydosporum was also derived from infected tissue of a wild Musalutea, showing the importance of wild bananas as a possible sink for Foc.

15.
J Nat Prod ; 85(4): 846-856, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35175766

RESUMEN

An investigation of the chemical components of the fermentation extract of two cultures of Amylosporus cf. graminicola and Amylosporus cf. campbelii from Cuba and Zimbabwe, respectively, led to the isolation of seven previously undescribed secondary metabolites for which we proposed the trivial names amylosporanes A-G (1-7) along with the known compounds orsellinic acid (11), colletorin D acid (12), colletorin B (13), colletochlorin B (14), and the ß-lactam cyclo-(S-Pro-R-Leu) (15). Three additional compounds (8-10) previously unknown from a fungal source were also characterized for the first time, and two of them were assigned the trivial names amylosporanes H-I (8-9) while the other was identified as cannabigerorcinic acid (10). The structures of the isolated compounds were determined based on their high-resolution electrospray ionization mass spectrometry (HR-ESIMS) spectra and an extensive analysis of their 1D and 2D NMR spectroscopic data. Based on literature searches, we hypothesized that a majority of the isolated metabolites have orsellinic acid (11) as a biosynthetic precursor following a combined route of mevalonate-associated and orsellinic acid-associated pathways. Colletochlorin B (14), the only compound possessing chlorine in its structure, exhibited significant activity against Bacillus subtilis (minimum inhibitory concentration, 2 µg/mL), stronger than that of oxytetracycline, and significant cytotoxicity against A431 cells with an IC50 value of 4.6 µM.


Asunto(s)
Basidiomycota , Poaceae , Bacillus subtilis , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Terpenos/farmacología
16.
J Fungi (Basel) ; 9(1)2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36675874

RESUMEN

Bacterial resistance to antibiotics is a serious public health problem that needs new antibacterial compounds for control. Fungi, including resupinated fungi, are a potential source to discover new bioactive compounds efficient again to bacteria resistant to antibiotics. The inhibitory capacity against the bacterial species was statistically evaluated. All the species (basidiomata and strains) were molecularly characterized with the ITS1-5.8S-ITS2 barcoding marker. The strains Ceraceomyces sp., Fuscoporia sp., Gloeocystidiellum sp., Oliveonia sp., Phanerochaete sp., and Xenasmatella sp. correspond to resupinate Basidiomycetes, and only the strain Hypocrea sp. is an Ascomycete, suggesting contamination to the basidiome of Tulasnella sp. According to the antagonistic test, only the Gloeocystidiellum sp. strain had antibacterial activity against the bacterial species Escherichia coli of clinical interest. Statistically, Gloeocystidiellum sp. was significantly (<0.001) active against two E. coli pathotypes (O157:H7 and ATCC 25922). Contrarily, the antibacterial activity of fungi against other pathotypes of E. coli and other strains such as Serratia sp. was not significant. The antibacterial activity between 48 and 72 h increased according to the measurement of the inhibition halos. Because of this antibacterial activity, Gloeocystidiellum sp. was taxonomically studied in deep combined morphological and molecular characterization (ITS1-5.8S-ITS2; partial LSU D1/D2 of nrDNA). A new species Gloeocystidiellum lojanense, a resupinate and corticioid fungus from a tropical montane rainforest of southern Ecuador, with antibacterial potential against E. coli, is proposed to the science.

17.
Commun Biol ; 4(1): 871, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34267314

RESUMEN

Fungal biotechnology is set to play a keystone role in the emerging bioeconomy, notably to address pollution issues arising from human activities. Because they preserve biological diversity, Biological Resource Centres are considered as critical infrastructures to support the development of biotechnological solutions. Here, we report the first large-scale phenotyping of more than 1,000 fungal strains with evaluation of their growth and degradation potential towards five industrial, human-designed and recalcitrant compounds, including two synthetic dyes, two lignocellulose-derived compounds and a synthetic plastic polymer. We draw a functional map over the phylogenetic diversity of Basidiomycota and Ascomycota, to guide the selection of fungal taxa to be tested for dedicated biotechnological applications. We evidence a functional diversity at all taxonomic ranks, including between strains of a same species. Beyond demonstrating the tremendous potential of filamentous fungi, our results pave the avenue for further functional exploration to solve the ever-growing issue of ecosystems pollution.


Asunto(s)
Biotecnología/métodos , Colorantes/metabolismo , Hongos/metabolismo , Microbiología Industrial/métodos , Lignina/metabolismo , Plásticos/metabolismo , Ascomicetos/clasificación , Ascomicetos/genética , Ascomicetos/metabolismo , Basidiomycota/clasificación , Basidiomycota/genética , Basidiomycota/metabolismo , Hongos/clasificación , Hongos/genética , Variación Genética , Geografía , Humanos , Fenotipo , Filogenia , Especificidad de la Especie
18.
J Nat Prod ; 83(8): 2501-2507, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32786884

RESUMEN

Three previously undescribed compounds named heimiomycin A-C (1-3), featuring a unique scaffold with calamenene connected to a hydroxystyryl-pyranone moiety, along with the new calamenene derivatives 4 and 5 and phenanthridine derivative (6) were obtained from a culture of a Heimiomyces sp. This is the first report of the occurrence of calamenene-type terpenoids in fungi. Compound 3 exhibited antimicrobial activity against Gram-positive bacteria and Mucor hiemalis. Compounds 1 and 3 displayed moderate cytotoxicity against KB 3.1 and L929 cell lines, respectively.


Asunto(s)
Basidiomycota/química , Productos Biológicos/aislamiento & purificación , Productos Biológicos/química , Productos Biológicos/farmacología , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Bacterias Grampositivas/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Sesquiterpenos/química , Sesquiterpenos/aislamiento & purificación , Sesquiterpenos/farmacología , Análisis Espectral/métodos
19.
IMA Fungus ; 11: 3, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32617255

RESUMEN

Ips subelongatus is a major pest that infects larch plantations over large areas of northern and northeastern China. Ips species are closely associated with ophiostomatoid fungi that are morphologically well-adapted for dispersal by beetles. These associations result in important threat for coniferous forests worldwide. The aim of this study was to characterize the ophiostomatoid communities associated with I. subelongatus infesting Larix species and sympatric Pinus sylvestris var. mongolica in northeastern China forests. Morphological and multilocus phylogenetic approaches (based on six markers: ITS, LSU, 60S, ß-tubulin, EF-1α, and CAL gene regions) allowed identifying 14 species of four genera (Ceratocystiopsis, Endoconidiophora, Leptographium and Ophiostoma). Eight species are showed to be new to science. Most strains resided in two Ophiostoma species complexes, viz. the O. clavatum and the O. ips complexes, all together accounting for 76.8% of all isolates. Ophiostoma hongxingense sp. nov., O. peniculi sp. nov., and O. subelongati sp. nov. (O. clavatum complex) and O. pseudobicolor sp. nov. (O. ips complex) were the four dominant species. The ophiostomatoid communities associated with larch bark beetles, I. cembrae and I. subelongatus, in Europe and Asia, China and Japan, also were compared. These comparisons showed distinct, specific assemblage patterns.

20.
Beilstein J Org Chem ; 15: 2782-2789, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31807212

RESUMEN

During the course of screening for new metabolites from basidiomycetes, we isolated and characterized five previously undescribed secondary metabolites, skeletocutins M-Q (1-5), along with the known metabolite tyromycin A (6) from the fruiting bodies of the polypore Skeletocutis sp. The new compounds did not exhibit any antimicrobial, cytotoxic, or nematicidal activities. However, compound 3 moderately inhibited the biofilm formation of Staphylococcus aureus (S. aureus), while compounds 3 and 4 performed moderately in the ʟ-leucine-7-amido-4-methylcoumarin (ʟ-Leu-AMC) inhibition assay. These compounds represent the first secondary metabolites reported to occur in the fruiting bodies by Skeletocutis. Interestingly, tyromycin A (6) was found to be the only common metabolite in fruiting bodies and mycelial cultures of the fungus, and none of the recently reported skeletocutins from the culture of the same strain were detected in the basidiomes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...