Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2405622, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961635

RESUMEN

The stability of hybrid organic-inorganic halide perovskite semiconductors remains a significant obstacle to their application in photovoltaics. To this end, the use of low-dimensional (LD) perovskites, which incorporate hydrophobic organic moieties, provides an effective strategy to improve their stability, yet often at the expense of their performance. To address this limitation, supramolecular engineering of noncovalent interactions between organic and inorganic components has shown potential by relying on hydrogen bonding and conventional van der Waals interactions. Here, the capacity to access novel LD perovskite structures that uniquely assemble through unorthodox S-mediated interactions is explored by incorporating benzothiadiazole-based moieties. The formation of S-mediated LD structures is demonstrated, including one-dimensional (1D) and layered two-dimensional (2D) perovskite phases assembled via chalcogen bonding and S-π interactions, through a combination of techniques, such as single crystal and thin film X-ray diffraction, as well as solid-state NMR spectroscopy, complemented by molecular dynamics simulations, density functional theory calculations, and optoelectronic characterization, revealing superior conductivities of S-mediated LD perovskites. The resulting materials are applied in n-i-p and p-i-n perovskite solar cells, demonstrating enhancements in performance and operational stability that reveal a versatile supramolecular strategy in photovoltaics.

2.
Adv Mater ; : e2314289, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38483029

RESUMEN

Electrical doping of semiconductors is a revolutionary development that enabled many electronic and optoelectronic technologies. While doping of many inorganic and organic semiconductors is well-established, controlled electrical doping of metal halide perovskites (MHPs) is yet to be demonstrated. In this work, efficient n- and p-type electrical doping of MHPs by co-evaporating the perovskite precursors alongside organic dopant molecules is achieved. It is demonstrated that the Fermi level can be shifted by up to 500 meV toward the conduction band and by up to 400 meV toward the valence band by n- and p-doping, respectively, which increases the conductivity of the films. The doped layers are employed in PN and NP diodes, showing opposing trends in rectification. Demonstrating controlled electrical doping by a scalable, industrially relevant deposition method opens the route to developing perovskite devices beyond solar cells, such as thermoelectrics or complementary logic.

3.
J Mater Chem A Mater ; 11(30): 16115-16126, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-38013759

RESUMEN

Inorganic cesium lead iodide (CsPbI3) perovskite solar cells (PSCs) have attracted enormous attention due to their excellent thermal stability and optical bandgap (∼1.73 eV), well-suited for tandem device applications. However, achieving high-performance photovoltaic devices processed at low temperatures is still challenging. Here we reported a new method for the fabrication of high-efficiency and stable γ-CsPbI3 PSCs at lower temperatures than was previously possible by introducing the long-chain organic cation salt ethane-1,2-diammonium iodide (EDAI2) and regulating the content of lead acetate (Pb(OAc)2) in the perovskite precursor solution. We find that EDAI2 acts as an intermediate that can promote the formation of γ-CsPbI3, while excess Pb(OAc)2 can further stabilize the γ-phase of CsPbI3 perovskite. Consequently, improved crystallinity and morphology and reduced carrier recombination are observed in the CsPbI3 films fabricated by the new method. By optimizing the hole transport layer of CsPbI3 inverted architecture solar cells, we demonstrate efficiencies of up to 16.6%, surpassing previous reports examining γ-CsPbI3 in inverted PSCs. Notably, the encapsulated solar cells maintain 97% of their initial efficiency at room temperature and under dim light for 25 days, demonstrating the synergistic effect of EDAI2 and Pb(OAc)2 in stabilizing γ-CsPbI3 PSCs.

4.
ACS Photonics ; 10(5): 1504-1511, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37215325

RESUMEN

Semiconductor quantum dot molecules are considered promising candidates for quantum technological applications due to their wide tunability of optical properties and coverage of different energy scales associated with charge and spin physics. While previous works have studied the tunnel-coupling of the different excitonic charge complexes shared by the two quantum dots by conventional optical spectroscopy, we here report on the first demonstration of a coherently controlled interdot tunnel-coupling focusing on the quantum coherence of the optically active trion transitions. We employ ultrafast four-wave mixing spectroscopy to resonantly generate a quantum coherence in one trion complex, transfer it to and probe it in another trion configuration. With the help of theoretical modeling on different levels of complexity, we give an instructive explanation of the underlying coupling mechanism and dynamical processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...