RESUMEN
BACKGROUND: Despite serious health and social consequences, effective intervention strategies for habitual alcohol binge drinking are lacking. The development of novel therapeutic and preventative approaches is highly desirable. Accumulating evidence in the past several years has established associations between the gut microbiome and microbial metabolites with drinking behavior, but druggable targets and their underlying mechanism of action are understudied. RESULTS: Here, using a drink-in-the-dark mouse model, we identified a microbiome metabolite-based novel treatment (sodium valerate) that can reduce excessive alcohol drinking. Sodium valerate is a sodium salt of valeric acid short-chain fatty acid with a similar structure as γ-aminobutyric acid (GABA). Ten days of oral sodium valerate supplementation attenuates excessive alcohol drinking by 40%, reduces blood ethanol concentration by 53%, and improves anxiety-like or approach-avoidance behavior in male mice, without affecting overall food and water intake. Mechanistically, sodium valerate supplementation increases GABA levels across stool, blood, and amygdala. It also significantly increases H4 acetylation in the amygdala of mice. Transcriptomics analysis of the amygdala revealed that sodium valerate supplementation led to changes in gene expression associated with functional pathways including potassium voltage-gated channels, inflammation, glutamate degradation, L-DOPA degradation, and psychological behaviors. 16S microbiome profiling showed that sodium valerate supplementation shifts the gut microbiome composition and decreases microbiome-derived neuroactive compounds through GABA degradation in the gut microbiome. CONCLUSION: Our findings suggest that sodium valerate holds promise as an innovative therapeutic avenue for the reduction of habitual binge drinking, potentially through multifaceted mechanisms. Video Abstract.
Asunto(s)
Microbioma Gastrointestinal , Ácido gamma-Aminobutírico , Animales , Masculino , Ratones , Microbioma Gastrointestinal/efectos de los fármacos , Ácido gamma-Aminobutírico/metabolismo , Ácidos Grasos Volátiles/metabolismo , Consumo de Bebidas Alcohólicas , Amígdala del Cerebelo/metabolismo , Amígdala del Cerebelo/efectos de los fármacos , Etanol , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Consumo Excesivo de Bebidas Alcohólicas , Ácidos PentanoicosRESUMEN
Development and severity of alcohol use disorder (AUD) has been linked to variations in gut microbiota and their associated metabolites in both animal and human studies. However, the involvement of the gut microbiome in alcohol consumption of individuals with AUD undergoing treatment remains unclear. To address this, stool samples (n=48) were collected at screening (baseline) and trial completion from a single site of a multi-site double-blind, placebo-controlled trial of Zonisamide in individuals with AUD. Alcohol consumption, gamma-glutamyl transferase (GGT), and phosphatidylethanol (PEth)levels were measured both at baseline and endpoint of 16-week trial period. Fecal microbiome was analyzed via 16S rRNA sequencing and metabolome via untargeted LC-MS. Both sex (p = 0.003) and psychotropic medication usage (p = 0.025) are associated with baseline microbiome composition. The relative abundance of 12 genera at baseline was correlated with percent drinking reduction, baseline and endpoint alcohol consumption, and changes in GGT and PeTH over the course of treatment (p.adj < 0.05). Overall microbiome community structure at baseline differed between high and low responders (67-100% and 0-33% drinking reduction, respectively; p = 0.03). A positive relationship between baseline fecal GABA levels and percent drinking reduction (R=0.43, p < 0.05) was identified by microbiome function prediction and confirmed by ELISA and metabolomics. Predicted microbiome function and metabolomics analysis have found that tryptophan metabolic pathways are over-represented in low responders. These findings highlight importance of baseline microbiome and metabolites in alcohol consumption in AUD patients undergoing zonisamide treatment.
RESUMEN
Background: Despite serious health and social consequences, effective intervention strategies for habitual alcohol binge drinking are lacking. Development of novel therapeutic and preventative approaches is highly desirable. Accumulating evidence in the past several years has established associations between the gut microbiome and microbial metabolites with drinking behavior, but druggable targets and their underlying mechanism of action are understudied. Results: Here, using a drink-in-the-dark mouse model, we identified a microbiome metabolite-based novel treatment (sodium valerate) that can reduce excessive alcohol drinking. Sodium valerate is a sodium salt of valeric acidshort-chain-fatty-acid with similar structure as γ-aminobutyric acid (GABA). Ten days of oral sodium valerate supplementation attenuates excessive alcohol drinking by 40%, reduces blood ethanol concentration by 53%, and improves anxiety-like or approach-avoidance behavior in male mice, without affecting overall food and water intake. Mechanistically, sodium valerate supplementation increases GABA levels across stool, blood, and amygdala. It also significantly increases H4 acetylation in the amygdala of mice. Transcriptomics analysis of the amygdala revealed that sodium valerate supplementation led to changes in gene expression associated with functional pathways including potassium voltage-gated channels, inflammation, glutamate degradation, L-DOPA degradation, and psychological behaviors. 16S microbiome profiling showed that sodium valerate supplementation shifts the gut microbiome composition and decreases microbiome-derived neuroactive compounds through GABA degradation in the gut microbiome. Conclusion: Our findings suggest that the sodium valerate holds promise as an innovative therapeutic avenue for the reduction of habitual binge drinking, potentially through multifaceted mechanisms.
RESUMEN
SCOPE: Fucosylated human milk oligosaccharides (fHMOs) are metabolized by Bifidobacterium infantis and promote syntrophic interactions between microbiota that colonize the infant gut. The role of fHMO structure on syntrophic interactions and net microbiome function is not yet fully understood. METHODS AND RESULTS: Metabolite production and microbial populations are tracked during mono- and co-culture fermentations of 2'fucosyllactose (2'FL) and difucosyllactose (DFL) by two B. infantis strains and Eubacterium hallii. This is also conducted in an in vitro modeled microbiome supplemented by B. infantis and/or E. hallii. Metabolites are quantified by high performance liquid chromatography. Total B. infantis and E. hallii populations are quantified through qRT-PCR and community composition through 16S amplicon sequencing. Differential metabolism of 2'FL and DFL by B. infantis strains gives rise to strain- and fHMO structure-specific syntrophy with E. hallii. Within the modeled microbial community, fHMO structure does not strongly alter metabolite production in aggregate, potentially due to functional redundancy within the modeled community. In contrast, community composition is dependent on fHMO structure. CONCLUSION: Whereas short chain fatty acid production is not significantly altered by the specific fHMO structure introduced to the modeled community, specific fHMO structure influences the composition of the gut microbiome.
Asunto(s)
Microbioma Gastrointestinal , Leche Humana , Humanos , Lactante , Leche Humana/química , Bifidobacterium longum subspecies infantis/metabolismo , Oligosacáridos/metabolismoRESUMEN
Human milk oligosaccharides (HMOs) enrich beneficial bifidobacteria in the infant gut microbiome which produce molecules that impact development and physiology. 2'fucosyllactose (2'FL) is a highly abundant fucosylated HMO which is utilized by Bifidobacterium longum subsp. infantis, despite limited scientific understanding of the underlying mechanism. Moreover, there is not a current consensus on whether free fucose could be metabolized when not incorporated in a larger oligosaccharide structure. Based on metabolic and genomic analyses, we hypothesize that B. infantis catabolizes both free fucose and fucosyl oligosaccharide residues to produce 1,2-propanediol (1,2-PD). Accordingly, systems-level approaches including transcriptomics and proteomics support this metabolic path. Co-fermentation of fucose and limiting lactose or glucose was found to promote significantly higher biomass and 1,2-PD concentrations than individual substrates, suggesting a synergistic effect. In addition, and during growth on 2'FL, B. infantis achieves significantly higher biomass corresponding to increased 1,2-PD. These findings support a singular fucose catabolic pathway in B. infantis that is active on both free and HMO-derived fucose and intimately linked with central metabolism. The impact of fucose and 2'FL metabolism on B. infantis physiology provides insight into the role of fucosylated HMOs in influencing host- and microbe-microbe interactions within the infant gut microbiome.
RESUMEN
Solid-oxide fuel/electrolyzer cells are limited by a dearth of electrolyte materials with low ohmic loss and an incomplete understanding of the structure-property relationships that would enable the rational design of better materials. Here, using epitaxial thin-film growth, synchrotron radiation, impedance spectroscopy, and density-functional theory, the impact of structural parameters (i.e., unit-cell volume and octahedral rotations) on ionic conductivity is delineated in La0.9 Sr0.1 Ga0.95 Mg0.05 O3- δ . As compared to the zero-strain state, compressive strain reduces the unit-cell volume while maintaining large octahedral rotations, resulting in a strong reduction of ionic conductivity, while tensile strain increases the unit-cell volume while quenching octahedral rotations, resulting in a negligible effect on the ionic conductivity. Calculations reveal that larger unit-cell volumes and octahedral rotations decrease migration barriers and create low-energy migration pathways, respectively. The desired combination of large unit-cell volume and octahedral rotations is normally contraindicated, but through the creation of superlattice structures both expanded unit-cell volume and large octahedral rotations are experimentally realized, which result in an enhancement of the ionic conductivity. All told, the potential to tune ionic conductivity with structure alone by a factor of ≈2.5 at around 600 °C is observed, which sheds new light on the rational design of ion-conducting perovskite electrolytes.
RESUMEN
Electric-field control of magnetism requires deterministic control of the magnetic order and understanding of the magnetoelectric coupling in multiferroics like BiFeO3 and EuTiO3. Despite this critical need, there are few studies on the strain evolution of magnetic order in BiFeO3 films. Here, in (110)-oriented BiFeO3 films, we reveal that while the polarization structure remains relatively unaffected, strain can continuously tune the orientation of the antiferromagnetic-spin axis across a wide angular space, resulting in an unexpected deviation of the classical perpendicular relationship between the antiferromagnetic axis and the polarization. Calculations suggest that this evolution arises from a competition between the Dzyaloshinskii-Moriya interaction and single-ion anisotropy wherein the former dominates at small strains and the two are comparable at large strains. Finally, strong coupling between the BiFeO3 and the ferromagnet Co0.9Fe0.1 exists such that the magnetic anisotropy of the ferromagnet can be effectively controlled by engineering the orientation of the antiferromagnetic-spin axis.
RESUMEN
Complex-oxide materials tuned to be near phase boundaries via chemistry/composition, temperature, pressure, etc. are known to exhibit large susceptibilities. Here, we observe a strain-driven nanoscale phase competition in epitaxially constrained Bi0.7La0.3FeO3 thin films near the antipolar-nonpolar phase boundary and explore the evolution of the structural, dielectric, (anti)ferroelectric, and magnetic properties with strain. We find that compressive and tensile strains can stabilize an antipolar PbZrO3-like Pbam phase and a nonpolar Pnma orthorhombic phase, respectively. Heterostructures grown with little to no strain exhibit a self-assembled nanoscale mixture of the two orthorhombic phases, wherein the relative fraction of each phase can be modified with film thickness. Subsequent investigation of the dielectric and (anti)ferroelectric properties reveals an electric-field-driven phase transformation from the nonpolar phase to the antipolar phase. X-ray linear dichroism reveals that the antiferromagnetic-spin axes can be effectively modified by the strain-induced phase transition. This evolution of antiferromagnetic-spin axes can be leveraged in exchange coupling between the antiferromagnetic Bi0.7La0.3FeO3 and a ferromagnetic Co0.9Fe0.1 layer to tune the ferromagnetic easy axis of the Co0.9Fe0.1. These results demonstrate that besides chemical alloying, epitaxial strain is an alternative and effective way to modify subtle phase relations and tune physical properties in rare earth-alloyed BiFeO3. Furthermore, the observation of antiferroelectric-antiferromagnetic properties in the Pbam Bi0.7La0.3FeO3 phase could be of significant scientific interest and great potential in magnetoelectric devices because of its dual antiferroic nature.
RESUMEN
Leveraging competition between energetically degenerate states to achieve large field-driven responses is a hallmark of functional materials, but routes to such competition are limited. Here, a new route to such effects involving domain-structure competition is demonstrated, which arises from strain-induced spontaneous partitioning of PbTiO3 thin films into nearly energetically degenerate, hierarchical domain architectures of coexisting c/a and a1 /a2 domain structures. Using band-excitation piezoresponse force microscopy, this study manipulates and acoustically detects a facile interconversion of different ferroelastic variants via a two-step, three-state ferroelastic switching process (out-of-plane polarized c+ â in-plane polarized a â out-of-plane polarized c- state), which is concomitant with large nonvolatile electromechanical strains (≈1.25%) and tunability of the local piezoresponse and elastic modulus (>23%). It is further demonstrated that deterministic, nonvolatile writing/erasure of large-area patterns of this electromechanical response is possible, thus showing a new pathway to improved function and properties.
RESUMEN
A strain-driven orthorhombic (O) to rhombohedral (R) phase transition is reported in La-doped BiFeO3 thin films on silicon substrates. Biaxial compressive epitaxial strain is found to stabilize the rhombohedral phase at La concentrations beyond the morphotropic phase boundary (MPB). By tailoring the residual strain with film thickness, we demonstrate a mixed O/R phase structure consisting of O phase domains measuring tens of nanometers wide within a predominant R phase matrix. A combination of piezoresponse force microscopy (PFM), transmission electron microscopy (TEM), polarization-electric field hysteresis loop (P-E loop), and polarization maps reveal that the O-R structural change is an antiferroelectric to ferroelectric (AFE-FE) phase transition. Using scanning transmission electron microscopy (STEM), an atomically sharp O/R MPB is observed. Moreover, X-ray absorption spectra (XAS) and X-ray linear dichroism (XLD) measurements reveal a change in the antiferromagnetic axis orientation from out of plane (R-phase) to in plane (O-phase). These findings provide direct evidence of spin-charge-lattice coupling in La-doped BiFeO3 thin films. Furthermore, this study opens a new pathway to drive the AFE-FE O-R phase transition and provides a route to study the O/R MPB in these films.
RESUMEN
In the pursuit of energy efficient materials, vanadium dioxide (VO2) based smart coatings have gained much attention in recent years. For smart window applications, VO2 thin films should be fabricated at low temperature to reduce the cost in commercial fabrication and solve compatibility problems. Meanwhile, thermochromic performance with high luminous transmittance and solar modulation ability, as well as effective UV shielding function has become the most important developing strategy for ideal smart windows. In this work, facile Cr2O3/VO2 bilayer coatings on quartz glasses were designed and fabricated by magnetron sputtering at low temperatures ranging from 250 to 350 °C as compared with typical high growth temperatures (>450 °C). The bottom Cr2O3 layer not only provides a structural template for the growth of VO2 (R), but also serves as an antireflection layer for improving the luminous transmittance. It was found that the deposition of Cr2O3 layer resulted in a dramatic enhancement of the solar modulation ability (56.4%) and improvement of luminous transmittance (26.4%) when compared to single-layer VO2 coating. According to optical measurements, the Cr2O3/VO2 bilayer structure exhibits excellent optical performances with an enhanced solar modulation ability (ΔTsol = 12.2%) and a high luminous transmittance (Tlum,lt = 46.0%), which makes a good balance between ΔTsol and Tlum for smart windows applications. As for UV-shielding properties, more than 95.8% UV radiation (250-400 nm) can be blocked out by the Cr2O3/VO2 structure. In addition, the visualized energy-efficient effect was modeled by heating a beaker of water using infrared imaging method with/without a Cr2O3/VO2 coating glass.
RESUMEN
A range of modern applications require large and tunable dielectric, piezoelectric or pyroelectric response of ferroelectrics. Such effects are intimately connected to the nature of polarization and how it responds to externally applied stimuli. Ferroelectric susceptibilities are, in general, strongly temperature dependent, diminishing rapidly as one transitions away from the ferroelectric phase transition (TC). In turn, researchers seek new routes to manipulate polarization to simultaneously enhance susceptibilities and broaden operational temperature ranges. Here, we demonstrate such a capability by creating composition and strain gradients in Ba1-xSrxTiO3 films which result in spatial polarization gradients as large as 35 µC cm-2 across a 150 nm thick film. These polarization gradients allow for large dielectric permittivity with low loss (Ér≈775, tan δ<0.05), negligible temperature-dependence (13% deviation over 500 °C) and high-dielectric tunability (greater than 70% across a 300 °C range). The role of space charges in stabilizing polarization gradients is also discussed.
RESUMEN
A novel approach to on-demand improvement of electronic properties in complex-oxide ferroelectrics is demonstrated whereby ion bombardment - commonly used in classic semiconductor materials - is applied to the PbTiO3 system. The result is deterministic reduction in leakage currents by 5 orders of magnitude, improved ferroelectric switching, and unprecedented insights into the nature of defects and intergap state evolution in these materials.
RESUMEN
Ferroelectric domain walls are of great interest as elementary building blocks for future electronic devices due to their intrinsic few-nanometre width, multifunctional properties and field-controlled topology. To realize the electronic functions, domain walls are required to be electrically conducting and addressable non-destructively. However, these properties have been elusive because conducting walls have to be electrically charged, which makes them unstable and uncommon in ferroelectric materials. Here we reveal that spontaneous and recorded domain walls in thin films of lead zirconate and bismuth ferrite exhibit large conductance at microwave frequencies despite being insulating at d.c. We explain this effect by morphological roughening of the walls and local charges induced by disorder with the overall charge neutrality. a.c. conduction is immune to large contact resistance enabling completely non-destructive walls read-out. This demonstrates a technological potential for harnessing a.c. conduction for oxide electronics and other materials with poor d.c. conduction, particularly at the nanoscale.