Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Tradit Chin Med ; 44(2): 403-407, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38504547

RESUMEN

Herbal medicine is safe and effective in treating various diseases. Traditional herbal medicine plays a tremendous role in treatment of various diseases and accompanying complications, hence herbal medicine requires remarkable attention in further research for the development of numerous active formulations for treatment of health troubles. The plant needs special consideration for development and research of unidentified compound and characterization of novel active molecules that overcome multiple pathological abnormalities. The genus Manilkara contains 135 plants around the world. This overview discusses all the virtues of most important and commonly used plant Manilkara zapota (L.) P. Royen (M. zapota), also known as Sapodilla. M. zapota has various traditional beneficial effects in treatment of various diseases and disorders dating back to prehistoric times and used in ancient traditional system of herbal medicine.


Asunto(s)
Manilkara , Plantas Medicinales , Humanos , Extractos Vegetales/farmacología
2.
Artículo en Inglés | MEDLINE | ID: mdl-37937554

RESUMEN

BACKGROUND: The most difficult kind of cancer to treat is brain cancer, which causes around 3% of all cancer-related deaths. The targeted delivery is improved with the use of technologies based on nanotechnology that are both safe and efficient. Because of this, there is now a lot of research being done on brain cancer treatments based on nanoformulations. OBJECTIVE: In this review, the author's primary aim is to elucidate the various nanomedicine for brain cancer therapy. The authors focus primarily on the advancement of nanotechnology in treating brain cancer (BC). This review article gives readers an up-to-date look at publications on sophisticated nanosystems in treating BC, including quantum dots (QDs), nanoparticles (NPs), polymeric micelles (PMs), dendrimers, and solid lipid nanoparticles (SLNs), among others. This article offers insight into the use of various nanotechnology-based systems for therapy as well as their potential in the future. This article also emphasizes the drawbacks of nanotechnology-based methods. Future perspectives for treating brain cancer using proteomics and biomimetic nanosystems are briefly discussed. CONCLUSION: In this review, we review several aspects of brain cancer therapy, including various nanomedicines, their challenges and future perspectives. Overall, this article gives a thorough overview of both the present state of brain cancer treatment options and the disease itself.

3.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-37259401

RESUMEN

The world's health system is plagued by cancer and a worldwide effort is underway to find new drugs to treat cancer. There has been a significant improvement in understanding the pathogenesis of cancer, but it remains one of the leading causes of death. The imperative 1,3,4-oxadiazole scaffold possesses a wide variety of biological activities, particularly for cancer treatment. In the development of novel 1,3,4-oxadiazole-based drugs, structural modifications are important to ensure high cytotoxicity towards malignant cells. These structural modification strategies have shown promising results when combined with outstanding oxadiazole scaffolds, which selectively interact with nucleic acids, enzymes, and globular proteins. A variety of mechanisms, such as the inhibition of growth factors, enzymes, and kinases, contribute to their antiproliferative effects. The activity of different 1,3,4-oxadiazole conjugates were tested on the different cell lines of different types of cancer. It is demonstrated that 1,3,4-oxadiazole hybridization with other anticancer pharmacophores have different mechanisms of action by targeting various enzymes (thymidylate synthase, HDAC, topoisomerase II, telomerase, thymidine phosphorylase) and many of the proteins that contribute to cancer cell proliferation. The focus of this review is to highlight the anticancer potential, molecular docking, and SAR studies of 1,3,4-oxadiazole derivatives by inhibiting specific cancer biological targets, such as inhibiting telomerase activity, HDAC, thymidylate synthase, and the thymidine phosphorylase enzyme. The purpose of this review is to summarize recent developments and discoveries in the field of anticancer drugs using 1,3,4-oxadiazoles.

4.
Pharmaceuticals (Basel) ; 16(6)2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37375752

RESUMEN

In this innovative research, a novel series of thiazolidin-4-one analogues having a 1,3,4-oxadiazole/thiadiazole moiety were derived and the structures of all the newly obtained molecules were established using different physicochemical and analytical means (1H-NMR, FTIR, mass spectra, and elemental analyses). The synthesized molecules were then investigated for their antiproliferative, antimicrobial, and antioxidant potential. The cytotoxicity screening studies revealed that analogues D-1, D-6, D-15, and D-16 possessed comparable efficacy, within the IC50 range (1 to 7 µM), when taking doxorubicin as a reference drug (IC50 = 0.5 µM). The antimicrobial activity was assessed using different Gram-(+) and Gram-(-) bacterial and fungal strains and the results revealed that molecules D-2, D-4, D-6, D-19, and D-20 possessed potent activity against selective strains of microbes with MIC ranges of 3.58 to 8.74 µM. The antioxidant evaluation was performed using the DPPH assay and the screening results revealed that analogue D-16 was the most potent derivative (IC50 = 22.3 µM) when compared with the positive control, ascorbic acid (IC50 = 111.6 µM). Structure-activity relationship (SAR) studies of the synthesized novel derivatives revealed that para-substituted halogen and hydroxy derivatives have remarkable potential against the MCF-7 cancer cell line and antioxidant potential. Similarly, electron-withdrawing groups (Cl/NO2) and -donating groups at the para position possess moderate to promising antimicrobial potential.

5.
Pharmaceuticals (Basel) ; 16(4)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37111274

RESUMEN

By exploiting the ample biological potential of 1,3,4-oxadiazole/thiadiazole ring, 4-substitutedphenyl-1,3,4-oxadiazol/Thiadiazol-2-yl)-4-(4-substitutedphenyl) azetidin-2-one derivatives were prepared. Various substituted azetidin-2-one derivatives have been identified as immunostimulating and antimicrobial, as well as their antioxidant activity. 2-amino 1,3,4 oxadiazole/thiadiazole conjugates were synthesized by mixing semi/thio carbazides and sodium acetate with water and stirring well, followed by adding aldehydes in methanol at room temperature. Acetate (glacial) was used as the catalyst to produce Schiff's bases (intermediates) by treating substituted aldehydes with 2-amino 1,3,4 oxadiazole/thiadiazole(s). Using the mixture of triethylamine (dropwise) and chloroacetylchloride with vigorous stirring, 4-substitutedphenyl-1,3,4-oxadiazol/Thiadiazol-2-yl)-4-(4-substitutedphenyl) azetidin-2-one derivatives were prepared. The newly synthesized conjugates were evaluated for their anticancer potential using MCF-7 cell lines. Amoxicillin and fluconazole were used as reference drugs to determine their antimicrobial activity. Synthesized derivatives were evaluated for their antioxidant properties using 2-diphenyl-1-picrylhydrazyl (DPPH). In vitro cytotoxicity screening (MTTS assay) revealed that derivatives AZ-5, 9, 10, 14 and 19 demonstrated high efficacy with the percentage of inhibition at different concentration ranges (0.1 µM, 0.5 µM, 1 µM, 2 µM) of 89% to 94% µM as compared to doxorubicin as standard drug. The antimicrobial study indicated that compounds AZ-10, 19, and AZ-20 were found to have significant antimicrobial potential with MIC ranges of 3.34 µM to 3.71 µM in comparison to reference drugs having 4.29 µM to 5.10 µM. Based on antioxidant screening, most of the synthetic derivatives showed greater stability and effectiveness than the standard drug. According to the antioxidant screening, compounds AZ-5 and AZ-15 (IC50 = 45.02 µg/mL and 42.88 µg/mL, respectively) showed the greatest potency, as compared to ascorbic acid (IC50 = 78.63 µg/mL). Structure-activity relationship (SAR) studies of synthesized novel derivatives revealed that para-substituted halogen and nitro derivatives have remarkable potential against MCF-7 cancer cell lines and different microbial strains. Current evidence indicates that the synthesized derivatives may be promising candidates for use in the prevention and treatment of these infections. These synthesized compounds require further mechanism-based research to understand how they interact with the cells.

6.
Am J Hum Biol ; 35(6): e23867, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36651684

RESUMEN

Seasonal changes in the human cardiovascular system are known to play an important role in the onset of many diseases. Confounding variables include behavioral and environmental factors; failing to address such variables makes measuring the true temporal impact of these diseases difficult. On the other hand, numerous clinical studies imply that only specific groups of people are more seasonal sensitive and that their maladaptation might contribute to various illnesses. As a result, it is critical to evaluate the etiological and seasonal sensitive patterns of cardiovascular diseases (CVD), which impact the majority of the human population. The hypothesis for this study formulated that cardiovascular and associated illnesses had substantial connections with seasonal and etiological variations. Thus in the present study, 4519 systematic screen-eligible studies were analyzed using data mining to uncover 852 disease association relationships between cardiovascular and associated disorders. A disease ontology-based semantic similarity network (DSN) analysis was performed to narrow down the identified CVDs. Further, topological analysis was used to predict the seven CVDs, including myocardial infarction (MI), in three clusters. Following that, Mann-Kendall and Cox-Stuart analyses were used to investigate the seasonal sensitivity and temporal relationship of these seven CVDs. Finally, temporal relationships were confirmed using LOESS and TBATS, as well as seasonal breakdown utilizing autocorrelation and fast Fourier transform results. The study provides indirect evidence of a severe etiological association among the three cardiovascular diseases, including MI, atrial fibrillation, and atherosclerosis, which are winter season sensitive in most of the world population. Hypertension has two seasonal falls and peaks due to its seasonal nature, that is, summer and winter hypertension. While, heart failure was also identified, with minor temporal trends. Hence, all five diseases could be classified as seasonal cardiovascular comorbid diseases (SCCD). Furthermore, these diseases could be studied for potential common risk factors such as biochemical, genetic, and physiological factors.


Asunto(s)
Enfermedades Cardiovasculares , Sistema Cardiovascular , Hipertensión , Humanos , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/etiología , Estaciones del Año , Hipertensión/epidemiología , Factores de Riesgo
7.
Molecules ; 27(19)2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36235304

RESUMEN

Heterocyclic compounds containing nitrogen and sulfur, especially those in the thiazole family, have generated special interest in terms of their synthetic chemistry, which is attributable to their ubiquitous existence in pharmacologically dynamic natural products and also as overwhelmingly powerful agrochemicals and pharmaceuticals. The thiazolidin-2,4-dione (TZD) moiety plays a central role in the biological functioning of several essential molecules. The availability of substitutions at the third and fifth positions of the Thiazolidin-2,4-dione (TZD) scaffold makes it a highly utilized and versatile moiety that exhibits a wide range of biological activities. TZD analogues exhibit their hypoglycemic activity by improving insulin resistance through PPAR-γ receptor activation, their antimicrobial action by inhibiting cytoplasmic Mur ligases, and their antioxidant action by scavenging reactive oxygen species (ROS). In this manuscript, an effort has been made to review the research on TZD derivatives as potential antimicrobial, antioxidant, and antihyperglycemic agents from the period from 2010 to the present date, along with their molecular mechanisms and the information on patents granted to TZD analogues.


Asunto(s)
Antiinfecciosos , Productos Biológicos , Compuestos Heterocíclicos , Tiazolidinedionas , Agroquímicos , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Ligasas , Nitrógeno , PPAR gamma , Preparaciones Farmacéuticas , Especies Reactivas de Oxígeno , Azufre , Tiazoles , Tiazolidinedionas/química
8.
J Ayurveda Integr Med ; 13(1): 100500, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34973886

RESUMEN

This paper aims to highlight the pharmacological aspects of listed herbal skincare products used for the treatment of various disorders caused due to ultraviolet radiation. The pharmacological aspects include safety and efficacy validation as per regulatory guidelines following internationally accepted scientific principles for their development of skincare products. Herbal products have always been used traditionally for the treatment of various skin ailments and have become more prevalent because of their safety and high efficacy benefits. The incorporation of synthetic molecules and chemical substances in the different medicinal and pharmaceutical formulations is the leading cause of the dermal toxicity. Therefore, the developments of herbal skincare products containing scientifically validated herbal ingredients have better acceptance, respect, and belief in the society. The listed herbal products in this review can help take forward the commercial development of skincare products for therapeutic as well as beauty care purposes from such plants.

9.
Mini Rev Med Chem ; 22(6): 927-948, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34579634

RESUMEN

Quinoxaline (C8H6N2), commonly called 1,4-diazanaphthalene, 1,4-benzodiazine, or benzopyrazine, is a very potent nitrogenous heterocyclic moiety consisting of a benzene ring fused with the pyrazine ring. A number of different methods for the synthesis of quinoxaline derivatives have been reported in the literature, but the most effective method, commonly used for the synthesis of quinoxaline analogues involves the condensation of substituted o-phenylenediamines with 1, 2- dicarbonyl compounds in the presence of different catalyst(s). The presence of different types of catalysts and their concentration affects the overall yield of the product. Quinoxaline not only plays an important role as an organic reaction intermediate but also has a wide spectrum of interesting biological activities viz. antibacterial, antifungal, anticancer, anti-inflammatory, antiviral, and antiprotozoal activity, etc. Some commercially available drug molecules containing quinoxaline moiety are echinomycin (as antibacterial, antineoplastic, and nucleic acid inhibitor), triostins (cyclic desipeptide as an antibacterial agent), dioxidine and mequindox (as antibacterial agents), carbadox (controlling swine dysentery), desoxycarbadox (as swine growth promoter) and panadipion (as hepatoprotective agent), etc. A large number of quinoxaline analogues possessing different biological activities and their synthetic procedures have been patented worldwide.


Asunto(s)
Antineoplásicos , Antiprotozoarios , Animales , Antibacterianos/farmacología , Antifúngicos , Antineoplásicos/química , Antineoplásicos/farmacología , Quinoxalinas , Porcinos
10.
BMC Chem ; 14(1): 25, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32266332

RESUMEN

BACKGROUND: Looking at the extensive biological potential of thiazolidine-2,4-dione (TZD) moiety, a new series of thiazolidine-2,4-dione analogues was synthesized. Different spectral techniques (1H-NMR, IR, MS etc.) were used to confirm the chemical structures of the synthesized analogues. These synthesized compounds were screened for their antioxidant and antimicrobial potential. RESULTS AND DISCUSSION: The antimicrobial screening was carried out against selected strains of fungi and bacteria using serial tube dilution method. The antioxidant potential was assessed using stable 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging method. Further, the interaction between synthesized thiazolidine-2,4-dione compounds and DNA gyrase was explored using molecular docking studies. Various ADME parameters were also studied to evaluate the drug likeness of the synthesized compounds. CONCLUSION: In antimicrobial evaluation, the compounds 4, 9, 11, 12, 13, 15 and 16 displayed promising activity against selected strains of microbes. Antioxidant evaluation found compound 6 having IC50 = 9.18 µg/mL to be the most potent compound in the series. The molecular docking study revealed compounds 4 (dock score = - 4.73) and 7 (dock score = - 4.61) with decent docking score, possess good interaction inside the ATP binding pocket of DNA gyrase and therefore can be used as lead structure for further optimizing into potent antimicrobial molecule.

11.
Anticancer Agents Med Chem ; 20(15): 1768-1779, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32091347

RESUMEN

Cervical cancer is the leading gynecologic health problem which is considered as the 4th most widespread tumour in women. The prevalence of this fatal ailment is emerging gradually across the globe as about 18.1 million new cancer cases have been reported in 2018. The predominance of cervical cancer has been significantly found in low and middle-income countries as cervical cancer ranks fourth for both incidence and mortality, conversely, there are no effective screening systems available. This mortal state is certainly influenced by exposure of human papillomavirus, dysregulation of caspase enzyme, elevated expression of Inhibitor Apoptotic Protein (IAP), overexpression of Vascular Endothelial Growth Factors (VEGF), active/passive smoking, and dysfunction of the immune system. Generally, the clinical trial on pipeline drugs leads to the development of some promising new therapies that are more effective than standard approaches and often unavailable outside of the clinical setting. Indeed, several biological interventions that can modulate the pathological cascade of cervical cancer are still under investigation. Thus, there is a need to further summarise the promising therapies for cervical cancer as we have accomplished in HER2-positive breast cancer by targeting HER2 therapies and immune checkpoint inhibitors in melanoma. The present report revealed the pharmacokinetic/ pharmacodynamics aspects of various pipeline drugs that are promising for the treatment of cervical cancer. Moreover, the study revealed the possible mechanism, adverse drug reaction, combined therapy and pleiotropic action of these under investigational drugs, which can further improve the therapeutic efficacy and restrict the imaginable harmful effects.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias del Cuello Uterino/tratamiento farmacológico , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Estructura Molecular , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/patología
12.
Eur J Med Chem ; 188: 112016, 2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-31926469

RESUMEN

In the last few decades, considerable progress has been made in anticancer agents development, and several new anticancer agents of natural and synthetic origin have been produced. Among heterocyclic compounds, thiazole, a 5-membered unique heterocyclic motif containing sulphur and nitrogen atoms, serves as an essential core scaffold in several medicinally important compounds. Thiazole nucleus is a fundamental part of some clinically applied anticancer drugs, such as dasatinib, dabrafenib, ixabepilone, patellamide A, and epothilone. Recently, thiazole-containing compounds have been successfully developed as possible inhibitors of several biological targets, including enzyme-linked receptor(s) located on the cell membrane, (i.e., polymerase inhibitors) and the cell cycle (i.e., microtubular inhibitors). Moreover, these compounds have been proven to exhibit high effectiveness, potent anticancer activity, and less toxicity. This review presents current research on thiazoles and elucidates their biological importance in anticancer drug discovery. The findings may aid researchers in the rational design of more potent and bio-target specific anticancer drug molecules.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Tiazoles/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Enzimas/metabolismo , Humanos , Estructura Molecular , Tiazoles/síntesis química , Tiazoles/química
13.
Mini Rev Med Chem ; 19(18): 1474-1516, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31092179

RESUMEN

Thiazolidin-2,4-dione (TZD) possessing an active methylene constitute an important chemical class of compounds for the development of new drugs. So, many scholars have synthesized these derivatives as target molecules and evaluated their biological potential. Currently, some of the TZDs are synthesized to treat human cancers stating high levels of PPARγ because it is expected that activation of PPARγ arbitrates their anticancer activity because PPARγ ligands have recently been established to affect differentiation, cell proliferation and apoptosis of different cell types. In the present review, the synthesis of various derivatives of thiazolidine-2,4-diones, their mechanism of action and anticancer activity have been highlighted.


Asunto(s)
Antineoplásicos/síntesis química , Tiazolidinedionas/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , PPAR gamma/química , PPAR gamma/metabolismo , Relación Estructura-Actividad , Tiazolidinedionas/farmacología , Tiazolidinedionas/uso terapéutico
14.
Life Sci ; 219: 90-99, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30639280

RESUMEN

Insulin remains a predominant life-saving medication for type 1 and type 2 Diabetes Mellites. Natural insulin secretion limits the fluctuation of the narrow and high surge of blood glucose levels. However, imitating the same by external insulin remains a challenge as a variety of insulin analogs (rapid acting, short acting, intermediate acting and long-acting) have different pharmacokinetic (PK) and pharmacodynamic (PD) properties. Inconsistent reduction in overall hyperglycemia level and nocturnal hypoglycemia due to variable absorption time and time action profile predominantly highlights the need of revisiting the PK/PD of insulin analogs as single analog is not yet sufficed to replace internal insulin exogenously. Combination therapy with basal and prandial insulins or intensification of hypoglycemic therapy with premixed insulins are of prime importance in managing diabetes effectively, imitating the natural insulin secretion. Therefore, the knowledge of PK/PD properties might help a practitioner to design, implement and manage insulin replacement therapy effectively and averting adverse events. Present study reports the comparative analysis of PK/PD profile of various insulin analogs based on the concurrent information about clinical aspects. Moreover, study interlinks the major concerns of therapeutic efficacy of insulin analogs with their respective onset of action and duration of effectiveness and reported adverse drug reaction which explore the scope of improvement.


Asunto(s)
Diabetes Mellitus/tratamiento farmacológico , Insulina/análogos & derivados , Predicción , Humanos , Insulina/uso terapéutico , Insulina Aspart/uso terapéutico , Insulina Detemir/uso terapéutico , Insulina Glargina/uso terapéutico , Insulina Lispro/uso terapéutico , Insulina de Acción Prolongada/uso terapéutico
15.
Pharmacol Rep ; 70(4): 789-795, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29957339

RESUMEN

BACKGROUND: Myocardial infarction (MI) is a solitary fatal condition with towering prevalence of mortality worldwide. Our previous study reports that low-dose copper nanoparticles (CuNP) can halt the progression of diabetes-induced cardiotoxicity as copper has anti-inflammatory, anti-proliferative and anti-oxidant potential. In addition, exercise training has also been considered a hallmark for cardiac health. METHOD: Cardioprotective potential of CuNP (1mg/kg/day, po, 4 weeks) and exercise (swimming, 90min, 5days/4 weeks) either alone or in combination was estimated by measuring the surge in serum nitrite/nitrate concentration and reduction in creatine kinase MB (CKMB), lactate dehydrogenase (LDH), cardiac troponin I (cTnI), lipid profile, oxidative stress, structural abnormalities against isproterenol (ISO)-induced MI. RESULTS: ISO significantly increased CKMB, LDH, cTnI, lipid alteration, oxidative stress, structural abnormalities and decrease nitrite/nitrate concentration in serum. Quantitative estimation of total and phosphorylated Akt(SER-473)/GSK-3b(SER-9) indicated the significant reduction in pAkt and pGSK-3b in ISO treated animal. Individual and combined treatment of CuNP and exercise significantly reduce ISO -induced CKMB, cTnI, LDH, and improve nitrite/nitrate concentration and lipid profile. Attenuation of myocardial oxidative stress and serum TBARS revealed the associated preconditioning effect of exercise and CuNP against oxidative stress. Exercise and CuNP also showed the protective potential against structural abnormalities. However, the cardioprotective effect of individual and combined strategy of exercise and CuNP was vanished by wortmannin and also avoid the downregulation of pGSK-3b. CONCLUSION: Low-dose CuNP and exercise training significantly prevents ISO-induced MI through preconditioning and GSK-3b inhibition. Ability to upsurge the NO level, lipid profile and reduced oxidative stress improve the potency of combined strategy.


Asunto(s)
Cobre/farmacología , Precondicionamiento Isquémico Miocárdico , Infarto del Miocardio/inducido químicamente , Infarto del Miocardio/prevención & control , Nanopartículas , Condicionamiento Físico Animal , Androstadienos/farmacología , Animales , Cardiotónicos/farmacología , Cobre/administración & dosificación , Forma MB de la Creatina-Quinasa/sangre , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Isoproterenol , L-Lactato Deshidrogenasa/sangre , Lípidos/sangre , Masculino , Infarto del Miocardio/sangre , Nanopartículas/administración & dosificación , Nitratos/sangre , Nitritos/sangre , Estrés Oxidativo/efectos de los fármacos , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo , Troponina I/sangre , Wortmanina
16.
Curr Top Med Chem ; 17(2): 238-250, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27237332

RESUMEN

Imidazo[1,2-a]pyridine is one of the most potential bicyclic 5-6 heterocyclic rings that is recognized as a "drug prejudice" scaffold due to its broad range of applications in medicinal chemistry such as anticancer, antimycobacterial, antileishmanial, anticonvulsant, antimicrobial, antiviral, antidiabetic, proton pump inhibitor, insecticidal activities. This scaffold has also been represented in various marketed preparations such as zolimidine, zolpidem, alpidem. Therefore, several attempts were made to carry out the structural modifications of this scaffold to discover and develop novel therapeutic agents. This review provides a valuable insight into the research findings of wide range of derivatives of imidazo[1,2-a]pyridine scaffold leading to promising heterocyclic compounds which could be explored further for the synthesis of new derivatives as well as construction of potential drug-like chemical libraries for biological screening in search of new therapeutic agents.


Asunto(s)
Antiinfecciosos/uso terapéutico , Piridinas/uso terapéutico , Antiinfecciosos/química , Pruebas de Sensibilidad Microbiana , Piridinas/química
17.
Curr Top Med Chem ; 17(2): 208-237, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27237334

RESUMEN

BACKGROUND: Severity of microbial infections and escalating resistance towards antibiotics has created a deep necessity for discovery of novel anti-infective agents. Heterocyclic chemistry of benzothiazole has become one of the most prolific areas in the field of drug discovery and development that has attracted great attention in recent time due to its increasing importance in the field of pharmaceuticals. METHOD: The importance of benzothiazole and derivatives as potential antimicrobial agents has been well established and a large number of papers have been published in this regard. RESULT: The present communication is an earnest attempt to review the chemistry, synthetic aspects including click chemistry and antimicrobial activities of benzothiazole derivatives reported in recent scientific literature. CONCLUSION: The scientific information of this manuscript may be worthwhile in encouraging the prospective researchers working on this heterocyclic scaffold.


Asunto(s)
Antiinfecciosos/farmacología , Benzotiazoles/farmacología , Antiinfecciosos/química , Benzotiazoles/química , Pruebas de Sensibilidad Microbiana , Estructura Molecular
18.
J Pharm Bioallied Sci ; 8(3): 188-94, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27413346

RESUMEN

AIM: Aim of this work was to design and identify some S-adenosyl-L-homocysteine (SAH) analogs as inhibitors of S-adenosyl-L-methionine-dependent methyltransferase (MTase) protein using computational approaches. INTRODUCTION: According to the current scenario the dengue has been a global burden. The people are being killed by dengue virus in an abundant number. Despite of lot of research being going on dengue worldwide, there is no single drug which can kill its virus. This creates an urge for new drug target identification and designing. MTase has been reported as an effective target against dengue virus as it catalyzes an essential step in methylation and capping of viral RNA for viral replication. MATERIALS AND METHODS: The crystal structure of MTase in complex with SAH was used for designing new analogs of SAH. SAH analogs designed were analyzed on the basis of docking, ADMET, and toxicity analysis done using Discovery Studio 3.5. RESULTS: Seventeen analogs found noncarcinogenic, nonmutagenic, as well as good ADMET properties and good drug-like profile. CONCLUSION: These SAH analogs, inhibitors of MTase may act as drugs against dengue virus. Further synthesis and biological testing against dengue virus is under observation.

19.
Acta Pol Pharm ; 73(1): 65-78, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27008802

RESUMEN

A series of 2-azetidinone derivatives was synthesized from hippuric acid and evaluated for its in vitro antimicrobial and anticancer activities. Antimicrobial properties of the title compounds were investigated against Gram positive and Gram negative bacterial as well as fungal strains. Anticancer activity was performed against breast cancer (MCF7) cell lines. Antimicrobial activity results revealed that N-{2-[3-chloro-2-(2- chlorophenyl)-4-oxoazetidin-1-ylamino]-2-oxoethyl}benzamide (4) was found to be the most potent antimicrobial agent. Results of anticancer study indicated that the synthesized compounds exhibited average anticancer potential and N-[2-(3-chloro-2-oxo-4-styrylazetidin-1-ylamino)-2-oxoethyl]benzamide (17) was found to be most potent anticancer agent against breast cancer (MCF7) cell lines. QSAR models indicated that the antibacterial, antifungal and the overall antimicrobial activities of the synthesized compounds were governed by topological parameters, Balaban index (J) and valence zero and first order molecular connectivity indices (°χv and ¹χv).


Asunto(s)
Antiinfecciosos/síntesis química , Antineoplásicos/síntesis química , Azetidinas/síntesis química , Antiinfecciosos/farmacología , Antineoplásicos/farmacología , Azetidinas/farmacología , Humanos , Células MCF-7 , Relación Estructura-Actividad Cuantitativa
20.
Acta Pol Pharm ; 73(1): 93-106, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27008804

RESUMEN

In this study, a novel series of 4-thiazolidinone derivatives (1-17) was synthesized and evaluated for its in vitro antimicrobial and anticancer potentials. N-(2-(5-(4-nitrobenzylidene)-2-(4-chlorophenyl)-4-oxothia- zolidin-3-ylamino)-2-oxoethyl) benzamide (7, pMICam = 1.86 µM/mL) was found to be the most active antimi- crobial agent. The anticancer study results demonstrated that N-(2-(5-(4-hydroxybenzylidene)-2-(4- methoxyphenyl)-4-oxothiazolidin-3-ylamino)-2-oxoethyl) benzamide (10, IC50 = 18.59 µM) was the most active anticancer agent. QSAR studies indicated the importance of topological parameter, Kier's α third order shape index (κα3) as well as electronic parameters, cosmic total energy (cos E) and energy of highest occupied molecular orbital (HOMO) in describing the antimicrobial activity of synthesized compounds.


Asunto(s)
Antiinfecciosos/síntesis química , Antineoplásicos/síntesis química , Relación Estructura-Actividad Cuantitativa , Tiazolidinas/síntesis química , Antiinfecciosos/farmacología , Antineoplásicos/farmacología , Línea Celular Tumoral , Humanos , Tiazolidinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA