Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
2.
J Biomech ; 151: 111543, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36931176

RESUMEN

Stress fibers (SFs), a contractile actin bundle in nonmuscle mesenchymal cells, are known to intrinsically sustain a constant level of tension or tensional stress, a process called cellular tensional homeostasis. Malfunction in this homeostatic process has been implicated in many diseases such atherosclerosis, but its mechanisms remain incompletely understood. Interestingly, the homeostatic stress in individual SFs is altered upon recruitment of α-smooth muscle actin in particular cellular contexts to reinforce the preexisting SFs. While this transition of the set-point stress is somewhat a universal process observed across different cell types, no clear explanation has been provided as to why cells end up possessing different stable stresses. To address the underlying physics, here we describe that imposing a realistic assumption on the nature of SFs yields the presence of multiple set-points of the homeostatic stress, which transition among them depending on the magnitude of the cellular tension. We analytically derive non-dimensional parameters that characterize the extent of the transition and predict that SFs tend to acquire secondary stable stresses if they are subject to as large a change in stiffness as possible or to as immediate a transition as possible upon increasing the tension. This is a minimal and simple explanation, but given the frequent emergence of force-dependent transformation of various subcellular structures in addition to that of SFs, the theoretical concept presented here would offer an essential guide to addressing potential common mechanisms governing complicated cellular mechanobiological responses.


Asunto(s)
Actinas , Contracción Muscular , Actinas/metabolismo , Fibras de Estrés/ultraestructura , Biofisica , Homeostasis , Estrés Mecánico
3.
Curr Protoc ; 3(1): e655, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36689324

RESUMEN

Fluorescence recovery after photobleaching (FRAP) is widely used to evaluate intracellular molecular turnover or repeated translocation of molecules using confocal laser scanning microscopy. While numerous models have been developed for the analysis of FRAP responses, in which chemical interactions and/or fast diffusion processes are involved, it is inherently difficult to evaluate the long-term behavior of molecular turnover because of the presence of intracellular flow and microscopic deformation of bleached regions. To overcome these difficulties, we have developed a novel continuum mechanics-based FRAP (CM-FRAP) approach that enables simultaneous evaluation of long-term molecular turnover and intracellular flow/deformation. Here we demonstrate the utility of CM-FRAP by using actin molecules associated with stress fibers in rat aortic smooth muscle cells with clarification of the experimental setup and data analysis. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Plasmid construction and sample preparation Basic Protocol 2: How to perform FRAP experiments Basic Protocol 3: Data analysis based on CM-FRAP.


Asunto(s)
Actinas , Animales , Ratas , Recuperación de Fluorescencia tras Fotoblanqueo/métodos , Microscopía Confocal/métodos , Fotoblanqueo , Difusión
4.
Biochem Biophys Res Commun ; 639: 169-175, 2023 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-36521377

RESUMEN

Myokines, secreted factors from skeletal muscle, act locally on muscle cells or satellite cells, which is important in regulating muscle mass and function. Here, we found platelet-derived growth factor subunit B (PDGF-B) is constitutively secreted from muscle cells without muscle contraction. Furthermore, PDGF-B secretion increased with myoblast to myotube differentiation. To examine the role of PDGF-B as a paracrine or autocrine myokine, myoblasts or myotubes were treated with PDGF-B. As a result, myoblast proliferation was significantly enhanced via several signaling pathways. Intriguingly, myotubes treated with PDGF-B showed enhanced maturation as indicated by their increased myotube diameter, myosin heavy chain expression, and strengthened contractile force. These findings suggest that PDGF-B is constitutively secreted by myokines to enhance myoblast proliferation and myotube maturation, which may contribute to skeletal muscle regeneration.


Asunto(s)
Fibras Musculares Esqueléticas , Células Satélite del Músculo Esquelético , Diferenciación Celular/fisiología , Proliferación Celular , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético , Transducción de Señal , Animales , Ratones
5.
Methods Mol Biol ; 2600: 311-322, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36587107

RESUMEN

Numerous models have been developed for the analysis of fluorescence recovery after photobleaching (FRAP), by which intracellular diffusion and turnover rate are quantitatively evaluated. FRAP analyses typically focus on such events that occur within several minutes, but to precisely evaluate a slow turnover rate of particularly actin stress fibers, achieving long-term FRAP observations of more than 10 min is necessary. In such long-term observations, the effect of intracellular advection is no longer ignored, which motivated us to develop a novel method to decouple the multiple factors associated with the long FRAP response. This method allows us to distinguish the origin of mechanobiological responses of stress fibers that come from either the level of individual actin filaments or that of actin monomers.


Asunto(s)
Citoesqueleto de Actina , Actinas , Recuperación de Fluorescencia tras Fotoblanqueo/métodos , Fibras de Estrés , Fotoblanqueo , Difusión
6.
PLoS One ; 17(11): e0276909, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36342915

RESUMEN

Fluorescence recovery after photobleaching (FRAP) is a versatile technique to evaluate the intracellular molecular exchange called turnover. Mechanochemical models of FRAP typically consider the molecular diffusion and chemical reaction that simultaneously occur on a time scale of seconds to minutes. Particularly for long-term measurements, however, a mechanical advection effect can no longer be ignored, which transports the proteins in specific directions within the cells and accordingly shifts the spatial distribution of the local chemical equilibrium. Nevertheless, existing FRAP models have not considered the spatial shift, and as such, the turnover rate is often analyzed without considering the spatiotemporally updated chemical equilibrium. Here we develop a new FRAP model aimed at long-term measurements to quantitatively determine the two distinct effects of the advection and chemical reaction, i.e., the different major sources of the change in fluorescence intensity. To validate this approach, we carried out FRAP experiments on actin in stress fibers over a time period of more than 900 s, and the advection rate was shown to be comparable in magnitude to the chemical dissociation rate. We further found that the actin-myosin interaction and actin polymerization differently affect the advection and chemical dissociation. Our results suggest that the distinction between the two effects is indispensable to extract the intrinsic chemical properties of the actin cytoskeleton from the observations of complicated turnover in cells.


Asunto(s)
Actinas , Fibras de Estrés , Actinas/metabolismo , Fibras de Estrés/metabolismo , Recuperación de Fluorescencia tras Fotoblanqueo/métodos , Citoesqueleto de Actina/metabolismo , Fotoblanqueo
7.
Sci Rep ; 12(1): 14466, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-36002503

RESUMEN

Tensional homeostasis is a cellular process whereby nonmuscle cells such as fibroblasts keep a constant level of intracellular tension and signaling activities. Cells are allowed thanks to tensional homeostasis to adapt to mechanical stress, but the detailed mechanism remains unclear. Here we address from a theoretical point of view what is required for maintaining cellular tensional homeostasis. A constrained optimization problem is formulated to analytically determine the probability function of the length of individual actin filaments (AFs) responsible for sustaining cellular tension. An objective function composed of two entropic quantities measuring the extent of formation and dispersion of AFs within cells is optimized under two constraint functions dictating a constant amount of actin molecules and tension that are arguably the two most salient features of tensional homeostasis. We then derive a specific probability function of AFs that is qualitatively consistent with previous experimental observations, in which short AF populations preferably appear. Regarding the underlying mechanism, our analyses suggest that the constraint for keeping the constant tension level makes long AF populations smaller in number because long AFs have a higher chance to be involved in bearing larger forces. The specific length distribution of AFs is thus required for achieving the constrained objectives, by which individual cells are endowed with the ability to stably maintain a homeostatic tension throughout the cell, thereby potentially allowing cells to locally detect deviation in the tension, keep resulting biological functions, and hence enable subsequent adaptation to mechanical stress. Although minimal essential factors are included given the actual complexity of cells, our approach would provide a theoretical basis for understanding complicated homeostatic and adaptive behavior of the cell.


Asunto(s)
Citoesqueleto de Actina , Actinas , Citoesqueleto de Actina/fisiología , Fibroblastos/fisiología , Homeostasis/fisiología , Estrés Mecánico
8.
Sci Rep ; 12(1): 13818, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35970858

RESUMEN

Muscle weakness is detrimental not only to quality of life but also life expectancy. However, effective drugs have still not been developed to improve and prevent muscle weakness associated with aging or diseases. One reason for the delay in drug discovery is that no suitable in vitro screening system has been established to test whether drugs improve muscle strength. Here, we used a specific deformable silicone gel substrate to effectively and sensitively evaluate the contractile force generated by myotubes from wrinkles formed on the substrate. Using this system, it was found that the contractile force generated by an atrophic phenotype of myotubes induced by dexamethasone or cancer cell-conditioned medium treatment significantly decreased while that generated by hypertrophic myotubes induced by insulin-like growth factor-1 significantly increased. Notably, it was found that changes in the index related to contractile force can detect atrophic or hypertrophic phenotypes more sensitively than changes in myotube diameter or myosin heavy chain expression, both commonly used to evaluate myotube function. These results suggest that our proposed system will be an effective tool for assessing the contractile force-related state of myotubes, which are available for the development of drugs to prevent and/or treat muscle weakness.


Asunto(s)
Debilidad Muscular , Calidad de Vida , Humanos , Contracción Muscular/fisiología , Fibras Musculares Esqueléticas/metabolismo , Debilidad Muscular/metabolismo , Cadenas Pesadas de Miosina/metabolismo
9.
Biochem Biophys Res Commun ; 620: 49-55, 2022 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-35777134

RESUMEN

The tension in the stress fibers (SFs) of cells plays a pivotal role in determining biological processes such as cell migration, morphological formation, and protein synthesis. Our previous research developed a method to evaluate the cellular contraction force generated in SFs based on photoelasticity-associated retardation of polarized light; however, we employed live cells, which could have caused an increase in retardation and not contraction force. Therefore, the present study aimed to confirm that polarized light retardation increases inherently due to contraction, regardless of cell activity. We also explored the reason why retardation increased with SF contractions. We used SFs physically isolated from vascular smooth muscle cells to stop cell activity. The retardation of SFs was measured after ATP administration, responsible for contracting SFs. The SFs were imaged under optical and electron microscopes to measure SF length, width, and retardation. The retardation of isolated SFs after ATP administration was significantly higher than before. Thus, we confirmed that retardation increased with elevated tension in individual SFs. Furthermore, the SF diameter decreased while the SF length remained almost constant. Thus, we conclude that a contraction force-driven increase in the density of SFs is the main factor for the rise in polarized light retardation.


Asunto(s)
Miocitos del Músculo Liso , Fibras de Estrés , Adenosina Trifosfato/metabolismo , Movimiento Celular , Miocitos del Músculo Liso/fisiología , Fibras de Estrés/metabolismo , Estrés Mecánico
10.
Biophys J ; 121(15): 2921-2930, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35778840

RESUMEN

Fluorescence recovery after photobleaching (FRAP) is a common technique to analyze the turnover of molecules in living cells. Numerous physicochemical models have been developed to quantitatively evaluate the rate of turnover driven by chemical reaction and diffusion that occurs in a few seconds to minutes. On the other hand, they have limitations in interpreting long-term FRAP responses where intracellular active movement inevitably provides target molecular architectures with additional effects other than chemical reaction and diffusion, namely directed transport and structural deformation. To overcome the limitations, we develop a continuum mechanics-based model that allows for decoupling FRAP response into the intrinsic turnover rate and subcellular mechanical characteristics such as displacement vector and strain tensor. Our approach was validated using fluorescently labeled ß-actin in an actomyosin-mediated contractile apparatus called stress fibers, revealing spatially distinct patterns of the multi-physicochemical events, in which the turnover rate, which represents effective off-rate of ß-actin, was significantly higher at the center of the cell. We also found that the turnover rate is negatively correlated with the rate of displacement or velocity along stress fibers but, interestingly, not with the absolute magnitude of strain. Moreover, stress fibers are subjected to centripetal flow that is facilitated by the circulation of actin molecules. Taken together, this novel framework for long-term FRAP analysis allows for unveiling the contribution of overlooked microscopic mechanics to molecular turnover in living cells.


Asunto(s)
Actinas , Fibras de Estrés , Citoesqueleto de Actina , Difusión , Recuperación de Fluorescencia tras Fotoblanqueo
11.
Front Cell Dev Biol ; 10: 885859, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35663386

RESUMEN

The linker of nucleoskeleton and cytoskeleton (LINC) complex is composed of the inner nuclear membrane-spanning SUN proteins and the outer nuclear membrane-spanning nesprin proteins. The LINC complex physically connects the nucleus and plasma membrane via the actin cytoskeleton to perform diverse functions including mechanotransduction from the extracellular environment to the nucleus. Mammalian somatic cells express two principal SUN proteins, namely SUN1 and SUN2. We have previously reported that SUN1, but not SUN2, is essential for directional cell migration; however, the underlying mechanism remains elusive. Because the balance between adhesive force and traction force is critical for cell migration, in the present study, we focused on focal adhesions (FAs) and the actin cytoskeleton. We observed that siRNA-mediated SUN1 depletion did not affect the recruitment of integrin ß1, one of the ubiquitously expressed focal adhesion molecules, to the plasma membrane. Consistently, SUN1-depleted cells normally adhered to extracellular matrix proteins, including collagen, fibronectin, laminin, and vitronectin. In contrast, SUN1 depletion reduced the activation of integrin ß1. Strikingly, the depletion of SUN1 interfered with the incorporation of vinculin into the focal adhesions, whereas no significant differences in the expression of vinculin were observed between wild-type and SUN1-depleted cells. In addition, SUN1 depletion suppressed the recruitment of zyxin to nascent focal adhesions. These data indicate that SUN1 is involved in the maturation of focal adhesions. Moreover, disruption of the SUN1-containing LINC complex abrogates the actin cytoskeleton and generation of intracellular traction force, despite the presence of SUN2. Thus, a physical link between the nucleus and cytoskeleton through SUN1 is required for the proper organization of actin, thereby suppressing the incorporation of vinculin and zyxin into focal adhesions and the activation of integrin ß1, both of which are dependent on traction force. This study provides insights into a previously unappreciated signaling pathway from the nucleus to the cytoskeleton, which is in the opposite direction to the well-known mechanotransduction pathways from the extracellular matrix to the nucleus.

12.
Commun Biol ; 5(1): 361, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35422083

RESUMEN

Combining experiments with artificial intelligence algorithms, we propose a machine learning based approach called wrinkle force microscopy (WFM) to extract the cellular force distributions from the microscope images. The full process can be divided into three steps. First, we culture the cells on a special substrate allowing to measure both the cellular traction force on the substrate and the corresponding substrate wrinkles simultaneously. The cellular forces are obtained using the traction force microscopy (TFM), at the same time that cell-generated contractile forces wrinkle their underlying substrate. Second, the wrinkle positions are extracted from the microscope images. Third, we train the machine learning system with GAN (generative adversarial network) by using sets of corresponding two images, the traction field and the input images (raw microscope images or extracted wrinkle images), as the training data. The network understands the way to convert the input images of the substrate wrinkles to the traction distribution from the training. After sufficient training, the network is utilized to predict the cellular forces just from the input images. Our system provides a powerful tool to evaluate the cellular forces efficiently because the forces can be predicted just by observing the cells under the microscope, which is much simpler method compared to the TFM experiment. Additionally, the machine learning based approach presented here has the profound potential for being applied to diverse cellular assays for studying mechanobiology of cells.


Asunto(s)
Inteligencia Artificial , Aprendizaje Automático , Algoritmos , Fenómenos Mecánicos , Microscopía de Fuerza Atómica/métodos
13.
Mol Biol Cell ; 33(1): ar10, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34705524

RESUMEN

Stress fibers (SFs), which are actomyosin structures, reorganize in response to various cues to maintain cellular homeostasis. Currently, the protein components of SFs are only partially identified, limiting our understanding of their responses. Here we isolate SFs from human fibroblasts HFF-1 to determine with proteomic analysis the whole protein components and how they change with replicative senescence (RS), a state where cells decline in the ability to replicate after repeated divisions. We found that at least 135 proteins are associated with SFs, and 63 of them are up-regulated with RS, by which SFs become larger in size. Among them, we focused on eEF2 (eukaryotic translation elongation factor 2) as it exhibited on RS the most significant increase in abundance. We show that eEF2 is critical to the reorganization and stabilization of SFs in senescent fibroblasts. Our findings provide a novel molecular basis for SFs to be reinforced to resist cellular senescence.


Asunto(s)
Senescencia Celular/fisiología , Factor 2 de Elongación Peptídica/metabolismo , Fibras de Estrés/fisiología , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Línea Celular , Células Cultivadas , Fibroblastos/metabolismo , Humanos , Factor 2 de Elongación Peptídica/genética , Factores de Elongación de Péptidos/metabolismo , Proteómica/métodos , Fibras de Estrés/metabolismo
14.
Mol Biol Cell ; 32(21): ar28, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34524873

RESUMEN

The Rho family of GTPases are inactivated in a cell context-dependent manner by Rho-GTPase-activating proteins (Rho-GAPs), but their signaling mechanisms are poorly understood. Here we demonstrate that ARHGAP4, one of the Rho-GAPs, forms a complex with SEPT2 and SEPT9 via its Rho-GAP domain and SH3 domain to enable both up- and down-modulation of integrin-mediated focal adhesions (FAs). We show that silencing ARHGAP4 and overexpressing its two mutually independent upstream regulators, SEPT2 and SEPT9, all induce reorganization of FAs to newly express Integrin Beta 1 and also enhance both cell migration and invasion. Interestingly, even if these cell migration/invasion-associated phenotypic changes are induced upon perturbations to the complex, it does not necessarily cause enhanced clustering of FAs. Instead, its extent depends on whether the microenvironment contains ligands suitable for the up-regulated Integrin Beta 1. These results provide novel insights into cell migration, invasion, and microenvironment-dependent phenotypic changes regulated by the newly identified complex.


Asunto(s)
Proteínas Activadoras de GTPasa/metabolismo , Septinas/metabolismo , Adhesión Celular/genética , Movimiento Celular/genética , Movimiento Celular/fisiología , Proteínas del Citoesqueleto/metabolismo , Adhesiones Focales/genética , Adhesiones Focales/fisiología , Proteínas Activadoras de GTPasa/genética , Células HEK293 , Humanos , Integrinas/metabolismo , Invasividad Neoplásica/genética , Septinas/genética , Transducción de Señal/genética , Proteína de Unión al GTP rhoA/metabolismo
15.
Exp Cell Res ; 404(1): 112619, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33965400

RESUMEN

Proteins in cells undergo repeated binding to other molecules, thereby reducing the apparent extent of their intracellular diffusion. While much effort has been made to analytically decouple these combined effects of pure diffusion and chemical binding, it is difficult with conventional approaches to attribute the measured quantities to the nature of specific domains of the proteins. Motivated by the common goal in cell signaling research aimed at identifying the domains responsible for particular intermolecular interactions, here we describe a framework for determining the local physicochemical properties of cellular proteins associated with immobile scaffolds. To validate this new approach, we apply it to transgelin-2, an actin-binding protein whose intracellular dynamics remains elusive. We develop a fluorescence recovery after photobleaching (FRAP)-based framework, in which comprehensive combinations of domain-deletion mutants are created, and the difference among them in FRAP response is analyzed. We demonstrate that transgelin-2 in actin stress fibers (SFs) interacts with F-actin via two separate domains, and the chemical properties are determined for the individual domains. Its pure diffusion properties independent of the association to F-actin is also obtained. Our approach will thus be useful, as presented here for transgelin-2, in addressing the signaling mechanism of cellular proteins associated with SFs.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas Musculares/metabolismo , Fibras de Estrés/metabolismo , Actinas/metabolismo , Animales , Recuperación de Fluorescencia tras Fotoblanqueo/métodos , Ratas
16.
Am J Physiol Cell Physiol ; 320(6): C1153-C1163, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33881935

RESUMEN

Cells adapt to applied cyclic stretch (CS) to circumvent chronic activation of proinflammatory signaling. Currently, the molecular mechanism of the selective disassembly of actin stress fibers (SFs) in the stretch direction, which occurs at the early stage of the cellular response to CS, remains controversial. Here, we suggest that the mechanosensitive behavior of myosin II, a major cross-linker of SFs, primarily contributes to the directional disassembly of the actomyosin complex SFs in bovine vascular smooth muscle cells and human U2OS osteosarcoma cells. First, we identified that CS with a shortening phase that exceeds in speed the inherent contractile rate of individual SFs leads to the disassembly. To understand the biological basis, we investigated the effect of expressing myosin regulatory light-chain mutants and found that SFs with less actomyosin activities disassemble more promptly upon CS. We consequently created a minimal mathematical model that recapitulates the salient features of the direction-selective and threshold-triggered disassembly of SFs to show that disassembly or, more specifically, unbundling of the actomyosin bundle SFs is enhanced with sufficiently fast cell shortening. We further demonstrated that similar disassembly of SFs is inducible in the presence of an active LIM-kinase-1 mutant that deactivates cofilin, suggesting that cofilin is dispensable as opposed to a previously proposed mechanism.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Factores Despolimerizantes de la Actina/metabolismo , Actinas/metabolismo , Miosina Tipo II/metabolismo , Fibras de Estrés/metabolismo , Actomiosina/metabolismo , Animales , Bovinos , Línea Celular Tumoral , Células Cultivadas , Proteínas del Citoesqueleto/metabolismo , Humanos , Contracción Muscular/fisiología , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Osteosarcoma/metabolismo , Estrés Mecánico
17.
Cytoskeleton (Hoboken) ; 78(3): 67-76, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33792196

RESUMEN

Rho-GTPase-activating proteins (Rho-GAPs) are essential upstream regulators of the Rho family of GTPases. Currently, it remains unclear if the phenotypic change caused by perturbations to a Rho-GAP is predictable from its amino acid sequence. Here we analyze the relationship between the morphological response of cells to the silencing of Rho-GAPs and their primary structure. For all possible pairs of 57 different Rho-GAPs expressed in MCF10A epithelial cells, the similarity in the Rho-GAP silencing-induced morphological change was quantified and compared to the similarity in the primary structure of the corresponding pairs. We found a distinct correlation between the morphological and sequence similarities in a specific group of RhoA-targeting Rho-GAPs. Thus, the family-wide analysis revealed a common feature shared by the specific Rho-GAPs.


Asunto(s)
Células Epiteliales , Proteínas Activadoras de GTPasa , Células Epiteliales/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo
18.
Biomech Model Mechanobiol ; 20(1): 155-166, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32776260

RESUMEN

Actin stress fibers (SFs), a contractile apparatus in nonmuscle cells, possess a contractile unit that is apparently similar to the sarcomere of myofibrils in muscles. The function of SFs has thus often been addressed based on well-characterized properties of muscles. However, unlike the fixed number of myosin molecules in myofibrils, the number of nonmuscle myosin II (NMII) within the contractile sarcomeric unit in SFs is quite low and variable for some reason. Here we address what factors may determine the specific number of NMII in SFs. We suggest with a theoretical model that the number lies just in between the function of SFs for bearing cellular tension under static conditions and for promptly disintegrating upon forced cell shortening. We monitored shortening-induced disintegration of SFs in human osteosarcoma U2OS cells expressing mutants of myosin regulatory light chain that virtually regulates the interaction of NMII with actin filaments, and the behaviors observed were indeed consistent with the theoretical consequences. This situation-specific nature of SFs may allow nonmuscle cells to respond adaptively to mechanical stress to circumvent activation of pro-inflammatory signals as previously indicated, i.e., a behavior distinct from that of muscles that are basically specialized for exhibiting contractile activity.


Asunto(s)
Miosina Tipo II/metabolismo , Sarcómeros/metabolismo , Fibras de Estrés/metabolismo , Citoesqueleto de Actina/metabolismo , Fenómenos Biomecánicos , Línea Celular Tumoral , Humanos , Modelos Biológicos , Mutación/genética , Cadenas Ligeras de Miosina/genética
19.
J Cell Sci ; 133(14)2020 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-32616561

RESUMEN

Keratin intermediate filament (IF) proteins constitute the major cytoskeletal components in epithelial cells. Missense mutations in keratin 5 (K5; also known as KRT5) or keratin 14 (K14; also known as KRT14), highly expressed in the basal epidermis, cause the severe skin blistering disease epidermolysis bullosa simplex (EBS). EBS-associated mutations disrupt keratin networks and change keratinocyte mechanics; however, molecular mechanisms by which mutations shape EBS pathology remain incompletely understood. Here, we demonstrate that, in contrast to keratin-deficient keratinocytes, cells expressing K14R125C, a mutation that causes severe EBS, generate lower traction forces, accompanied by immature focal adhesions with an altered cellular distribution. Furthermore, mutant keratinocytes display reduced directionality during collective migration. Notably, RhoA activity is downregulated in human EBS keratinocytes, and Rho activation rescues stiffness-dependent cell-extracellular matrix (ECM) adhesion formation of EBS keratinocytes. Collectively, our results strongly suggest that intact keratin IF networks regulate mechanotransduction through a Rho signaling pathway upstream of cell-ECM adhesion formation and organized cell migration. Our findings provide insights into the underlying pathophysiology of EBS.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Epidermólisis Ampollosa Simple , Queratinas , Citoesqueleto/metabolismo , Epidermólisis Ampollosa Simple/genética , Humanos , Queratinas/genética , Queratinas/metabolismo , Mecanotransducción Celular , Mutación/genética , Tracción
20.
Biochem Biophys Res Commun ; 530(3): 527-532, 2020 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-32646608

RESUMEN

We propose an image based cellular contractile force evaluation method using a machine learning technique. We use a special substrate that exhibits wrinkles when cells grab the substrate and contract, and the wrinkles can be used to visualize the force magnitude and direction. In order to extract wrinkles from the microscope images, we develop a new CNN (convolutional neural network) architecture SW-UNet (small-world U-Net), which is a CNN that reflects the concept of the small-world network. The SW-UNet shows better performance in wrinkle segmentation task compared to other methods: the error (Euclidean distance) of SW-UNet is 4.9 times smaller than the 2D-FFT (fast Fourier transform) based segmentation approach, and is 2.9 times smaller than U-Net. As a demonstration, here we compare the contractile force of U2OS (human osteosarcoma) cells and show that cells with a mutation in the KRAS oncogene show larger force compared to wild-type cells. Our new machine learning based algorithm provides us an efficient, automated and accurate method to evaluate the cell contractile force.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Aprendizaje Automático , Microscopía/métodos , Algoritmos , Fenómenos Biomecánicos , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Línea Celular Tumoral , Humanos , Mutación , Redes Neurales de la Computación , Osteosarcoma/genética , Osteosarcoma/patología , Proteínas Proto-Oncogénicas p21(ras)/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA