Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Development ; 151(4)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38369736

RESUMEN

The generation of neurons in the developing neocortex is a major determinant of neocortex size. Crucially, the increase in cortical neuron numbers in the primate lineage, notably in the upper-layer neurons, contributes to increased cognitive abilities. Here, we review major evolutionary changes affecting the apical progenitors in the ventricular zone and focus on the key germinal zone constituting the foundation of neocortical neurogenesis in primates, the outer subventricular zone (OSVZ). We summarize characteristic features of the OSVZ and its key stem cell type, the basal (or outer) radial glia. Next, we concentrate on primate-specific and human-specific genes, expressed in OSVZ-progenitors, the ability of which to amplify these progenitors by targeting the regulation of the cell cycle ultimately underlies the evolutionary increase in upper-layer neurons. Finally, we address likely differences in neocortical development between present-day humans and Neanderthals that are based on human-specific amino acid substitutions in proteins operating in cortical progenitors.


Asunto(s)
Neocórtex , Neuroglía , Animales , Humanos , Neuroglía/metabolismo , Neocórtex/metabolismo , Neuronas/metabolismo , Células Madre , Primates/genética , Neurogénesis/genética
2.
Commun Biol ; 6(1): 636, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37311857

RESUMEN

Fossil endocasts record features of brains from the past: size, shape, vasculature, and gyrification. These data, alongside experimental and comparative evidence, are needed to resolve questions about brain energetics, cognitive specializations, and developmental plasticity. Through the application of interdisciplinary techniques to the fossil record, paleoneurology has been leading major innovations. Neuroimaging is shedding light on fossil brain organization and behaviors. Inferences about the development and physiology of the brains of extinct species can be experimentally investigated through brain organoids and transgenic models based on ancient DNA. Phylogenetic comparative methods integrate data across species and associate genotypes to phenotypes, and brains to behaviors. Meanwhile, fossil and archeological discoveries continuously contribute new knowledge. Through cooperation, the scientific community can accelerate knowledge acquisition. Sharing digitized museum collections improves the availability of rare fossils and artifacts. Comparative neuroanatomical data are available through online databases, along with tools for their measurement and analysis. In the context of these advances, the paleoneurological record provides ample opportunity for future research. Biomedical and ecological sciences can benefit from paleoneurology's approach to understanding the mind as well as its novel research pipelines that establish connections between neuroanatomy, genes and behavior.


Asunto(s)
Encéfalo , Fósiles , Filogenia , Arqueología , Artefactos
3.
Adv Sci (Weinh) ; 9(10): e2103827, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35137562

RESUMEN

Parkinson's disease (PD) evolves over an extended and variable period in humans; years prior to the onset of classical motor symptoms, sleep and biological rhythm disorders develop, significantly impacting the quality-of-life of patients. Circadian-rhythm disorders are accompanied by mild cognitive deficits that progressively worsen with disease progression and can constitute a severe burden for patients at later stages. The gold-standard 6-methyl-1-methyl-4-phenyl-1,2,3,6-tetrahydropyridin (MPTP) macaque model of PD recapitulates the progression of motor and nonmotor symptoms over contracted periods of time. Here, this multidisciplinary/multiparametric study follows, in five animals, the steady progression of motor and nonmotor symptoms and describes their reversal following grafts of neural precursors in diverse functional domains of the basal ganglia. Results show unprecedented recovery from cognitive symptoms in addition to a strong clinical motor recuperation. Both motor and cognitive recovery and partial circadian rhythm recovery correlate with the degree of graft integration, and in a subset of animals, with in vivo levels of striatal dopaminergic innervation and function. The present study provides empirical evidence that integration of neural precursors following transplantation efficiently restores function at multiple levels in parkinsonian nonhuman primates and, given interindividuality of disease progression and recovery, underlines the importance of longitudinal multidisciplinary assessments in view of clinical translation.


Asunto(s)
Disfunción Cognitiva , Enfermedad de Parkinson , Animales , Disfunción Cognitiva/etiología , Dopamina , Humanos , Estudios Longitudinales , Macaca
4.
Neuron ; 109(18): 2847-2863.e11, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34407390

RESUMEN

Asymmetric neuronal expansion is thought to drive evolutionary transitions between lissencephalic and gyrencephalic cerebral cortices. We report that Neurog2 and Ascl1 proneural genes together sustain neurogenic continuity and lissencephaly in rodent cortices. Using transgenic reporter mice and human cerebral organoids, we found that Neurog2 and Ascl1 expression defines a continuum of four lineage-biased neural progenitor cell (NPC) pools. Double+ NPCs, at the hierarchical apex, are least lineage restricted due to Neurog2-Ascl1 cross-repression and display unique features of multipotency (more open chromatin, complex gene regulatory network, G2 pausing). Strikingly, selectively eliminating double+ NPCs by crossing Neurog2-Ascl1 split-Cre mice with diphtheria toxin-dependent "deleter" strains locally disrupts Notch signaling, perturbs neurogenic symmetry, and triggers cortical folding. In support of our discovery that double+ NPCs are Notch-ligand-expressing "niche" cells that control neurogenic periodicity and cortical folding, NEUROG2, ASCL1, and HES1 transcript distribution is modular (adjacent high/low zones) in gyrencephalic macaque cortices, prefiguring future folds.


Asunto(s)
Diferenciación Celular/fisiología , Neocórtex/embriología , Neocórtex/fisiología , Neurogénesis/fisiología , Neuronas/fisiología , Animales , Células Cultivadas , Femenino , Humanos , Macaca fascicularis , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Células 3T3 NIH , Neocórtex/citología , Embarazo , Imagen de Lapso de Tiempo/métodos
5.
Stem Cell Reports ; 16(1): 56-74, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33382978

RESUMEN

After reprogramming to naive pluripotency, human pluripotent stem cells (PSCs) still exhibit very low ability to make interspecies chimeras. Whether this is because they are inherently devoid of the attributes of chimeric competency or because naive PSCs cannot colonize embryos from distant species remains to be elucidated. Here, we have used different types of mouse, human, and rhesus monkey naive PSCs and analyzed their ability to colonize rabbit and cynomolgus monkey embryos. Mouse embryonic stem cells (ESCs) remained mitotically active and efficiently colonized host embryos. In contrast, primate naive PSCs colonized host embryos with much lower efficiency. Unlike mouse ESCs, they slowed DNA replication after dissociation and, after injection into host embryos, they stalled in the G1 phase and differentiated prematurely, regardless of host species. We conclude that human and non-human primate naive PSCs do not efficiently make chimeras because they are inherently unfit to remain mitotically active during colonization.


Asunto(s)
Diferenciación Celular , Quimera/metabolismo , Puntos de Control de la Fase G1 del Ciclo Celular , Células Madre Pluripotentes/citología , Animales , Apoptosis , Reprogramación Celular , Transferencia de Embrión , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Humanos , Macaca mulatta , Ratones , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Pluripotentes/metabolismo , Conejos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Curr Opin Neurobiol ; 66: 69-76, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33099180

RESUMEN

What I cannot create I do not understand - Richard Feynman 1978 Because primate cortical development exhibits numerous specific features, the mouse is an imperfect model for human cortical development. Expansion of supragranular neurons is an evolutionary feature characterizing the primate cortex. Increased production of supragranular neurons is supported by a germinal zone innovation of the primate cortex: the Outer SubVentricular Zone, which along with supragranular neurons constitute privileged targets of primate brain-specific gene evolution. The resulting cell-type diversity of human supragranular neurons link cell and molecular evolutionary changes in progenitors with the emergence of distinctive architectural features in the primate cortex. We propose that these changes are required for the expansion of the primate cortical hierarchy deploying top-down generative networks with potentially important consequences for the neurobiology of human psychiatric disorders.


Asunto(s)
Corteza Cerebral , Neurogénesis , Animales , Evolución Biológica , Ratones , Neuronas , Primates
7.
Front Cell Dev Biol ; 8: 588814, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33178700

RESUMEN

The orderly radial migration of cortical neurons from their birthplace in the germinal zones to their final destination in the cortical plate is a prerequisite for the functional assembly of microcircuits in the neocortex. Rodent and primate corticogenesis differ both quantitatively and qualitatively, particularly with respect to the generation of neurons of the supragranular layers. Marked area differences in the outer subventricular zone progenitor cell density impact the radial glia scaffold compactness which is likely to induce area differences in radial migration strategy. Here, we describe specific features of radial migration in the non-human primate, including the absence of the premigratory multipolar stage found in rodents. Ex vivo approaches in the embryonic macaque monkey visual cortex, show that migrating neurons destined for supragranular and infragranular layers exhibit significant differences in morphology and velocity. Migrating neurons destined for the supragranular layers show a more complex bipolar morphology and higher motility rates than do infragranular neurons. There are area differences in the gross morphology and membrane growth behavior of the tip of the leading process. In the subplate compartment migrating neurons destined for the supragranular layers of presumptive area 17 exhibit radial constrained trajectories and leading processes with filopodia, which contrast with the meandering trajectories and leading processes capped by lamellipodia observed in the migrating neurons destined for presumptive area 18. Together these results present evidence that migrating neurons may exhibit autonomy and in addition show marked area-specific differences. We hypothesize that the low motility and high radial trajectory of area 17 migrating neurons contribute to the unique structural features of this area.

8.
Science ; 369(6503): 506-507, 2020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32732410
9.
Biomacromolecules ; 21(8): 3394-3410, 2020 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-32584556

RESUMEN

Improving cell-material interactions of nonadhesive scaffolds is crucial for the success of biomaterials in tissue engineering. Due to their high surface area and open pore structure, sponges are widely reported as absorbent materials for biomedical engineering. The biocompatibility and biodegradability of polysaccharide sponges, coupled with the chemical functionalities of supramolecular dimers, make them promising combinations for the development of adhesive scaffolds. Here, a supramolecular tactic based on (UPy)-modified polysaccharide associated with three-dimensional structure of sponges was developed to reach enhanced cellular adhesion. For this purpose, three approaches were examined individually in order to accomplish this goal. In the first approach, the backbone polysaccharides with noncell adhesive properties were modified via a modular tactic using UPy-dimers. Hereupon, the physical-chemical characterizations of the supramolecular sponges were performed, showing that the presence of supramolecular dimers improved their mechanical properties and induced different architectures. In addition, small-angle neutron scattering (SANS) measurements and rheology experiments revealed that the UPy-dimers into agarose backbone are able to reorganize in thinning aggregates. It is also demonstrated that the resulted UPy-agarose (AGA-UPy) motifs in surfaces can promote cell adhesion. Finally, the last approach showed the great potential for use of this novel material in bioadhesive scaffolds indicating that neural stem cells show a spreading bias in soft materials and that cell adhesion was enhanced for all UPy-modified sponges compared to the reference, i.e. unmodified sponges. Therefore, by functionalizing sponge surfaces with UPy-dimers, an adhesive supramolecular scaffold is built which opens the opportunity its use neural tissues regeneration.


Asunto(s)
Adhesivos , Células-Madre Neurales , Materiales Biocompatibles , Polímeros , Ingeniería de Tejidos , Andamios del Tejido
10.
Natl Sci Rev ; 7(7): 1258-1259, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34692150
11.
Cereb Cortex ; 30(2): 656-671, 2020 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-31343065

RESUMEN

Perturbation of the developmental refinement of the corticospinal (CS) pathway leads to motor disorders. While non-primate developmental refinement is well documented, in primates invasive investigations of the developing CS pathway have been confined to neonatal and postnatal stages when refinement is relatively modest. Here, we investigated the developmental changes in the distribution of CS projection neurons in cynomolgus monkey (Macaca fascicularis). Injections of retrograde tracer at cervical levels of the spinal cord at embryonic day (E) 95 and E105 show that: (i) areal distribution of back-labeled neurons is more extensive than in the neonate and dense labeling is found in prefrontal, limbic, temporal, and occipital cortex; (ii) distributions of contralateral and ipsilateral projecting CS neurons are comparable in terms of location and numbers of labeled neurons, in contrast to the adult where the contralateral projection is an order of magnitude higher than the ipsilateral projection. Findings from one largely restricted injection suggest a hitherto unsuspected early innervation of the gray matter. In the fetus there was in addition dense labeling in the central nucleus of the amygdala, the hypothalamus, the subthalamic nucleus, and the adjacent region of the zona incerta, subcortical structures with only minor projections in the adult control.


Asunto(s)
Encéfalo/citología , Encéfalo/embriología , Neuronas/fisiología , Tractos Piramidales/citología , Tractos Piramidales/embriología , Animales , Axones/fisiología , Macaca fascicularis , Vías Nerviosas/citología , Vías Nerviosas/embriología , Técnicas de Trazados de Vías Neuroanatómicas
12.
Cereb Cortex ; 30(3): 1407-1421, 2020 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-31504286

RESUMEN

There is an extensive modification of the functional organization of the brain in the congenital blind human, although there is little understanding of the structural underpinnings of these changes. The visual system of macaque has been extensively characterized both anatomically and functionally. We have taken advantage of this to examine the influence of congenital blindness in a macaque model of developmental anophthalmia. Developmental anophthalmia in macaque effectively removes the normal influence of the thalamus on cortical development leading to an induced "hybrid cortex (HC)" combining features of primary visual and extrastriate cortex. Here we show that retrograde tracers injected in early visual areas, including HC, reveal a drastic reduction of cortical projections of the reduced lateral geniculate nucleus. In addition, there is an important expansion of projections from the pulvinar complex to the HC, compared to the controls. These findings show that the functional consequences of congenital blindness need to be considered in terms of both modifications of the interareal cortical network and the ascending visual pathways.


Asunto(s)
Ceguera/congénito , Cuerpos Geniculados/fisiopatología , Corteza Visual/fisiopatología , Vías Visuales/fisiología , Animales , Ceguera/fisiopatología , Mapeo Encefálico/métodos , Femenino , Cuerpos Geniculados/fisiología , Macaca fascicularis , Masculino , Neuronas/fisiología , Tálamo/fisiología , Tálamo/fisiopatología , Corteza Visual/fisiología , Vías Visuales/fisiopatología
13.
Cell Rep ; 29(3): 645-658.e5, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31618633

RESUMEN

Changes in transcriptional regulation through cis-regulatory elements are thought to drive brain evolution. However, how this impacts the identity of primate cortical neurons is still unresolved. Here, we show that primate-specific cis-regulatory sequences upstream of the Dbx1 gene promote human-like expression in the mouse embryonic cerebral cortex, and this imparts cell identity. Indeed, while Dbx1 is expressed in highly restricted cortical progenitors in the mouse ventral pallium, it is maintained in neurons in primates. Phenocopy of the primate-like Dbx1 expression in mouse cortical progenitors induces ectopic Cajal-Retzius and subplate (SP) neurons, which are transient populations playing crucial roles in cortical development. A conditional expression solely in neurons uncouples mitotic and postmitotic activities of Dbx1 and exclusively promotes a SP-like fate. Our results highlight how transcriptional changes of a single fate determinant in postmitotic cells may contribute to the expansion of neuronal diversity during cortical evolution.


Asunto(s)
Evolución Biológica , Corteza Cerebral/metabolismo , Proteínas de Homeodominio/metabolismo , Animales , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/patología , Embrión de Mamíferos/metabolismo , Femenino , Proteínas de Homeodominio/genética , Humanos , Macaca , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/metabolismo , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Embarazo , Proteínas de Dominio T Box/metabolismo
14.
J Comp Neurol ; 527(10): 1545-1557, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30682231

RESUMEN

We have examined the relationship between interkinetic nuclear migration (INM) and cell-cycle progression of apical progenitors in the ventricular zone (VZ) at different stages of mouse cerebral corticogenesis. We report stage-specific changes in INM due to a significant alteration of the nuclear apical movement dynamics with respect to cell-cycle phases. While at early stages, the apical nuclear movement corresponds to the G2 phase, cell-cycle phase specific immunostaining and real-time imaging of PCNA expressing apical progenitors revealed that at midcorticogenesis, the nuclear apical movement is initiated well before the entry into G2, during S phase. We observed that the S phase and G2 phase segments of the nuclear apical movement exhibit different velocities. Experimental shortening of cell-cycle duration via cyclin E overexpression in APs at midcorticogenesis leads to congruent INM behavior changes. This suggests that INM dynamics are under cell-cycle related constraints.


Asunto(s)
Ciclo Celular/fisiología , Núcleo Celular , Corteza Cerebral/embriología , Células-Madre Neurales , Neurogénesis/fisiología , Animales , Ratones
15.
J Comp Neurol ; 527(10): 1577-1597, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30636008

RESUMEN

During development of the mammalian cerebral neocortex, postmitotic excitatory neurons migrate toward the outermost region of the neocortex. We previously reported that this outermost region is composed of densely packed relatively immature neurons; we named this region, which is observed during the late stage of mouse neocortical development, the "primitive cortical zone (PCZ)." Here, we report that postmigratory immature neurons spend about 1-1.5 days in the PCZ. An electron microscopic analysis showed that the neurons in the PCZ tend to be in direct contact with each other, mostly in a radial direction, forming "primitive neuronal clusters" with a height of 3-7 cells and a width of 1-2 cells. A time-course analysis of fluorescently labeled neurons revealed that the neurons took their positions within the primitive clusters in an inside-out manner. The neurons initially participated in the superficial part of the clusters, gradually shifted their relative positions downward, and then left the clusters at the bottom of this structure. GABAergic inhibitory interneurons were also found within the primitive clusters in the developing mouse neocortex, suggesting that some clusters are composed of both excitatory neurons and inhibitory interneurons. Similar clusters were also observed in the outermost region of embryonic day (E) 78 cynomolgus monkey occipital cortex and 23 gestational week (GW) human neocortices. In the primate neocortices, including human, the presumptive primitive clusters seemed to expand in the radial direction more than that observed in mice, which might contribute to the functional integrity of the primate neocortex.


Asunto(s)
Movimiento Celular/fisiología , Neocórtex/embriología , Neurogénesis/fisiología , Neuronas/fisiología , Animales , Humanos , Macaca fascicularis , Ratones
16.
Neuron ; 99(4): 625-627, 2018 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-30138583

RESUMEN

Folding of the cerebral cortex results from interrelated biological and mechanical processes that are incompletely understood. In this issue, Long et al. identify the key roles of HAPLN1, lumican, collagen I, and HA in relationship with changes in tissue stiffness.


Asunto(s)
Ácido Hialurónico , Neocórtex , Colágeno , Matriz Extracelular , Humanos , Lumican , Fenómenos Mecánicos
17.
Cereb Cortex ; 28(8): 3017-3034, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29850900

RESUMEN

There is little understanding of the structural underpinnings of the functional reorganization of the cortex in the congenitally blind human. Taking advantage of the extensive characterization of the macaque visual system, we examine in macaque the influence of congenital blindness resulting from the removal of the retina during in utero development. This effectively removes the normal influence of the thalamus on cortical development leading to an induced hybrid cortex (HC) combining features of primary visual and extrastriate cortex. Retrograde tracers injected in HC reveal a local, intrinsic connectivity characteristic of higher order areas and show that the HC receives a uniquely strong, purely feedforward projection from striate cortex but no ectopic inputs, except from subiculum, and entorhinal cortex. Statistical modeling of quantitative connectivity data shows that HC is relatively high in the cortical hierarchy and receives a reinforced input from ventral stream areas while the overall organization of the functional streams are conserved. The directed and weighted anophthalmic cortical graph from the present study can be used to construct dynamic and structural models. These findings show how the sensory periphery governs cortical phenotype and reveal the importance of developmental arealization for understanding the functional reorganization in congenital blindness.


Asunto(s)
Mapeo Encefálico , Amaurosis Congénita de Leber/patología , Neuronas/fisiología , Corteza Visual/patología , Corteza Visual/fisiopatología , Vías Visuales/fisiopatología , Animales , Modelos Animales de Enfermedad , Macaca fascicularis , Red Nerviosa/patología , Pentobarbital/metabolismo
18.
Front Neurosci ; 12: 119, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29599703

RESUMEN

Multiple signals control the balance between proliferation and differentiation of neural progenitor cells during corticogenesis. A key point of this regulation is the control of G1 phase length, which is regulated by the Cyclin/Cdks complexes. Using genome-wide chromatin immunoprecipitation assay and mouse genetics, we have explored the transcriptional regulation of Cyclin D1 (Ccnd1) during the early developmental stages of the mouse cerebral cortex. We found evidence that SP8 binds to the Ccnd1 locus on exon regions. In vitro experiments show SP8 binding activity on Ccnd1 gene 3'-end, and point to a putative role for SP8 in modulating PAX6-mediated repression of Ccnd1 along the dorso-ventral axis of the developing pallium, creating a medialLow-lateralHigh gradient of neuronal differentiation. Activation of Ccnd1 through the promoter/5'-end of the gene does not depend on SP8, but on ßcatenin (CTNNB1). Importantly, alteration of the Sp8 level of expression in vivo affects Ccnd1 expression during early corticogenesis. Our results indicate that Ccnd1 regulation is the result of multiple signals and that SP8 is a player in this regulation, revealing an unexpected and potentially novel mechanism of transcriptional activation.

19.
Semin Cell Dev Biol ; 76: 112-119, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28864342

RESUMEN

The mechanisms shaping areal specification in the neocortex have been the focus of a sustained interest over the past three decades. Studies in rodents have provided insight in the interplay between intrinsic genetic mechanisms and extrinsic inputs relayed to the cortex by thalamocortical axons. Here we focus on the exploration of the developing primate visual system which points to embryonic thalamic axons exerting a profound, early instructive role on arealisation in the primate cortex, via an influence on cortical progenitor cell-cycle and mode of division.


Asunto(s)
Corteza Cerebral/embriología , Neocórtex/embriología , Animales , Humanos , Ratones
20.
Curr Opin Neurobiol ; 42: 75-83, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27978481

RESUMEN

Neural stem cells go through a sequence of timely regulated gene expression and pattern of division mode to generate diverse neurons during brain development. During vertebrate cerebral cortex development, neural stem cells begin with proliferative symmetric divisions, subsequently undergo neurogenic asymmetric divisions, and finally gliogenic divisions. In this review, we explore the relationship between stem cell versus neural fate specification and the division mode. Specifically, we discuss recent findings on the mechanisms of asymmetric divisions, division mode, and developmental progression of neural progenitor identity.


Asunto(s)
Corteza Cerebral/citología , Células-Madre Neurales/citología , Animales , División Celular , Corteza Cerebral/embriología , Neurogénesis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...