RESUMEN
BACKGROUND: Cervical cancer is the fourth most common cancer affecting women and is caused by human Papillomavirus (HPV) infections that are sexually transmitted. There are currently commercially available prophylactic vaccines that have been shown to protect vaccinated individuals against HPV infections, however, these vaccines have no therapeutic effects for those who are previously infected with the virus. The current study's aim was to use immunoinformatics to develop a multi-epitope vaccine with therapeutic potential against cervical cancer. RESULTS: In this study, T-cell epitopes from E5 and E7 proteins of HPV16/18 were predicted. These epitopes were evaluated and chosen based on their antigenicity, allergenicity, toxicity, and induction of IFN-γ production (only in helper T lymphocytes). Then, the selected epitopes were sequentially linked by appropriate linkers. In addition, a C-terminal fragment of Mycobacterium tuberculosis heat shock protein 70 (HSP70) was used as an adjuvant for the vaccine construct. The physicochemical parameters of the vaccine construct were acceptable. Furthermore, the vaccine was soluble, highly antigenic, and non-allergenic. The vaccine's 3D model was predicted, and the structural improvement after refinement was confirmed using the Ramachandran plot and ProSA-web. The vaccine's B-cell epitopes were predicted. Molecular docking analysis showed that the vaccine's refined 3D model had a strong interaction with the Toll-like receptor 4. The structural stability of the vaccine construct was confirmed by molecular dynamics simulation. Codon adaptation was performed in order to achieve efficient vaccine expression in Escherichia coli strain K12 (E. coli). Subsequently, in silico cloning of the multi-epitope vaccine was conducted into pET-28a ( +) expression vector. CONCLUSIONS: According to the results of bioinformatics analyses, the multi-epitope vaccine is structurally stable, as well as a non-allergic and non-toxic antigen. However, in vitro and in vivo studies are needed to validate the vaccine's efficacy and safety. If satisfactory results are obtained from in vitro and in vivo studies, the vaccine designed in this study may be effective as a therapeutic vaccine against cervical cancer.
Asunto(s)
Papillomavirus Humano 16 , Neoplasias del Cuello Uterino , Biología Computacional/métodos , Epítopos de Linfocito B , Epítopos de Linfocito T/química , Escherichia coli/metabolismo , Femenino , Papillomavirus Humano 18/genética , Humanos , Simulación del Acoplamiento Molecular , Vacunas de Subunidad/química , Vacunas de Subunidad/metabolismoRESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: In Iranian/Persian folkloric medicine, Physospermum cornubiense (Shokaran Baghi in Persian) is used for the treatment of pain and inflammation. OBJECTIVE: This modern examination included Swiss mice to investigate the anti-neuropathic and anti-nociceptive effects of Physospermum cornubiense essential oil (PCEO). MATERIALS AND METHODS: To determine PCEO 's anti-nociceptive function in formalin-induced paw licking (FML) paradigm, researchers looked at the arginine-nitric oxide and potassium channels pathway in addition to involvements of more specific examples of receptors such as adrenergic, opioid, cannabinoid, peroxisome proliferator-activated (PPA), and transient receptor potential vanilloid. The CVC or cervical spinal cord contusion exemplar has also been used to induce neuropathic pain. RESULTS: PCEO (450mg/kg) relative to control mice in the phase_ II of FML exemplar provided strong antinociception (pâ¯<â¯0.001). Furthermore, pre-treatments with arginine, glibenclamide, methylene blue, L-NAME, SNP, GW6471, naloxonazine, and GW9662 (pâ¯<â¯0.05) returned the PCEO antinociceptive response in the FML (inflammatory phase) model. Orally limonene administration significantly diminished (pâ¯<â¯0.001) acute pain in inflammatory phase of FML test. Moreover, the von Frey test indicated that both PCEO and limonene could return neuropathic pain (mechanical allodynia) in CVC mice. CONCLUSION: The results obtained from this study, together with literature, give evidence of properties of PCEO for therapy of antinociceptive and neuropathic pain.
RESUMEN
In December 2019, a new virus called SARS-CoV-2 was reported in China and quickly spread to other parts of the world. The development of SARS-COV-2 vaccines has recently received much attention from numerous researchers. The present study aims to design an effective multi-epitope vaccine against SARS-COV-2 using the reverse vaccinology method. In this regard, structural proteins from SARS-COV-2, including the spike (S), envelope (E), membrane (M), and nucleocapsid (N) proteins, were selected as target antigens for epitope prediction. A total of five helper T lymphocytes (HTL) and five cytotoxic T lymphocytes (CTL) epitopes were selected after screening the predicted epitopes for antigenicity, allergenicity, and toxicity. Subsequently, the selected HTL and CTL epitopes were fused via flexible linkers. Next, the cholera toxin B-subunit (CTxB) as an adjuvant was linked to the N-terminal of the chimeric structure. The proposed vaccine was analyzed for the properties of physicochemical, antigenicity, and allergenicity. The 3D model of the vaccine construct was predicted and docked with the Toll-like receptor 4 (TLR4). The molecular dynamics (MD) simulation was performed to evaluate the stable interactions between the vaccine construct and TLR4. The immune simulation was also conducted to explore the immune responses induced by the vaccine. Finally, in silico cloning of the vaccine construct into the pET-28 (+) vector was conducted. The results obtained from all bioinformatics analysis stages were satisfactory; however, in vitro and in vivo tests are essential to validate these results.
Asunto(s)
COVID-19 , SARS-CoV-2 , Vacunas contra la COVID-19 , China , Epítopos de Linfocito B , Epítopos de Linfocito T , Humanos , Simulación del Acoplamiento Molecular , Vacunas de SubunidadRESUMEN
MicroRNAs (miRNAs) are small regulatory molecules that negatively regulate gene expression by base-pairing with their target mRNAs. miRNAs have contribute significantly to cancer biology and recent studies have demonstrated the oncogenic or tumor-suppressing role in cancer cells. In many tumors up-regulation miRNAs has been reported especially miR-222 has been shown to be up-regulated in B chronic lymphocytic leukemia (B-CLL). In this study we assessed the effected inhibition of miR-222 in cell viability of B-CLL. We performed inhibition of mir-222 in B-CLL cell line (183-E95) using locked nucleic acid (LNA) antagomir. At different time points after LNA-anti-mir-222 transfection, miR-222 quantitation and cell viability were assessed by qRT-real time polymerase chain reaction and MTT assays. The data were analyzed by independent t test and one way ANOVA. Down-regulation of miR-222 in B-CLL cell line (183-E95) with LNA antagomir decreased cell viability in B-CLL. Cell viability gradually decreased over time as the viability of LNA-anti-mir transfected cells was <47 % of untreated cells at 72 h post-transfection. The difference in cell viability between LNA-anti-miR and control groups was statistically significant (p < 0.042). Based on our findings, the inhibition of miR-222 speculate represent a potential novel therapeutic approach for treatment of B-CLL.