Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
J Neuroimaging ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38932469

RESUMEN

BACKGROUND AND PURPOSE: In acute ischemic stroke (AIS) due to large-vessel occlusion (LVO), the relationship between cerebral oxygen extraction fraction (OEF) as the hallmark of the ischemic penumbra and leptomeningeal collateral supply is not well established. We aimed to investigate the relationship between pial collateralization and tissue oxygen extraction in patients with LVO using magnetic resonance imaging (MRI). METHODS: Data from 14 patients with anterior circulation LVO who underwent MRI before acute stroke treatment were analyzed. In addition to diffusion-weighted imaging and perfusion-weighted imaging (PWI), the protocol comprised sequences for multiparametric quantitative blood-oxygen-level-dependent imaging for the calculation of relative OEF (rOEF). Pial collateral supply was quantitatively assessed by analyzing the signal variance in T2*-weighted PWI time series. Relationships between collateral supply, infarct volume, rOEF in peri-infarct hypoperfused tissue, and clinical stroke severity were assessed. RESULTS: The PWI-based parameter quantifying collateral supply was negatively correlated with baseline ischemic core volume and rOEF in the hypoperfused peri-infarct area (p < .01). Both reduced collateral supply and increased rOEF correlated significantly with higher scores on the National Institutes of Health Stroke Scale (p < .05). Increased rOEF within hypoperfused tissue was associated with higher baseline (p = .043) and follow-up infarct volume (p = .009). CONCLUSIONS: Signal variance-based mapping of collaterals with PWI depicts pial collateral supply, which is closely tied to tissue pathophysiology and clinical and imaging outcomes. Magnetic-resonance-derived mapping of cerebral rOEF reveals penumbral characteristics of hypoperfused tissue and might provide a promising imaging biomarker in AIS.

2.
Cereb Circ Cogn Behav ; 6: 100218, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38510580

RESUMEN

Background: In cerebral small vessel disease (CSVD), cortical atrophy occurs at a later stage compared to microstructural abnormalities and therefore cannot be used for monitoring short-term disease progression. We aimed to investigate whether cortical diffusion tensor imaging (DTI) and quantitative (q) magnetic resonance imaging (MRI) are able to detect early microstructural involvement of the cerebral cortex in CSVD. Materials and Methods: 33 CSVD patients without significant cortical or whole-brain atrophy and 16 healthy control subjects were included and underwent structural MRI, DTI and high-resolution qMRI with T2, T2* and T2' mapping at 3 T as well as comprehensive cognitive assessment. After tissue segmentation and reconstruction of the cortical boundaries with the Freesurfer software, DTI and qMRI parameters were saved as surface datasets and averaged across all vertices. Results: Cortical diffusivity and quantitative T2 values were significantly increased in patients compared to controls (p < 0.05). T2 values correlated significantly positively with white matter hyperintensity (WMH) volume (p < 0.01). Both cortical diffusivity and T2 showed significant negative associations with axonal damage to the white matter fiber tracts (p < 0.05). Conclusions: Cortical diffusivity and quantitative T2 mapping are suitable to detect microstructural involvement of the cerebral cortex in CSVD and represent promising imaging biomarkers for monitoring disease progression and effects of therapeutical interventions in clinical studies.

3.
Epilepsia ; 65(5): 1462-1474, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38436479

RESUMEN

OBJECTIVE: Interictal blood-brain barrier dysfunction in chronic epilepsy has been demonstrated in animal models and pathological specimens. Ictal blood-brain barrier dysfunction has been shown in humans in vivo using an experimental quantitative magnetic resonance imaging (MRI) protocol. Here, we hypothesized that interictal blood-brain barrier dysfunction is also present in people with drug-resistant epilepsy. METHODS: Thirty-nine people (21 females, mean age at MRI ± SD = 30 ± 8 years) with drug-resistant epilepsy were prospectively recruited and underwent interictal T1-relaxometry before and after administration of a paramagnetic contrast agent. Likewise, quantitative T1 was acquired in 29 people without epilepsy (12 females, age at MRI = 48 ± 18 years). Quantitative T1 difference maps were calculated and served as a surrogate imaging marker for blood-brain barrier dysfunction. Values of quantitative T1 difference maps inside hemispheres ipsilateral to the presumed seizure onset zone were then compared, on a voxelwise level and within presumed seizure onset zones, to the contralateral side of people with epilepsy and to people without epilepsy. RESULTS: Compared to the contralateral side, ipsilateral T1 difference values were significantly higher in white matter (corrected p < .05), gray matter (uncorrected p < .05), and presumed seizure onset zones (p = .04) in people with epilepsy. Compared to people without epilepsy, significantly higher T1 difference values were found in the anatomical vicinity of presumed seizure onset zones (p = .004). A subgroup of people with hippocampal sclerosis demonstrated significantly higher T1 difference values in the ipsilateral hippocampus and in regions strongly interconnected with the hippocampus compared to people without epilepsy (corrected p < .01). Finally, z-scores reflecting the deviation of T1 difference values within the presumed seizure onset zone were associated with verbal memory performance (p = .02) in people with temporal lobe epilepsy. SIGNIFICANCE: Our results indicate a blood-brain barrier dysfunction in drug-resistant epilepsy that is detectable interictally in vivo, anatomically related to the presumed seizure onset zone, and associated with cognitive deficits.


Asunto(s)
Barrera Hematoencefálica , Epilepsia Refractaria , Imagen por Resonancia Magnética , Humanos , Barrera Hematoencefálica/fisiopatología , Barrera Hematoencefálica/patología , Barrera Hematoencefálica/diagnóstico por imagen , Femenino , Masculino , Adulto , Persona de Mediana Edad , Epilepsia Refractaria/fisiopatología , Epilepsia Refractaria/diagnóstico por imagen , Adulto Joven , Estudios Prospectivos , Epilepsia/fisiopatología , Epilepsia/diagnóstico por imagen
4.
Front Neurol ; 14: 1175971, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37528856

RESUMEN

Background and purpose: In patients with epilepsies of structural origin, brain atrophy and pathological alterations of the tissue microstructure extending beyond the putative epileptogenic lesion have been reported. However, in patients without any evidence of epileptogenic lesions on diagnostic magnetic resonance imaging (MRI), impairment of the brain microstructure has been scarcely elucidated. Using multiparametric quantitative (q) magnetic resonance imaging MRI, we aimed to investigate diffuse impairment of the microstructural tissue integrity in MRI-negative focal epilepsy patients. Methods: 27 MRI-negative patients with focal epilepsy (mean age 33.1 ± 14.2 years) and 27 matched healthy control subjects underwent multiparametric qMRI including T1, T2, and PD mapping at 3 T. After tissue segmentation based on synthetic anatomies, mean qMRI parameter values were extracted from the cerebral cortex, the white matter (WM) and the deep gray matter (GM) and compared between patients and control subjects. Apart from calculating mean values for the qMRI parameters across the respective compartments, voxel-wise analyses were performed for each tissue class. Results: There were no significant differences for mean values of quantitative T1, T2, and PD obtained from the cortex, the WM and the deep GM between the groups. Furthermore, the voxel-wise analyses did not reveal any clusters indicating significant differences between patients and control subjects for the qMRI parameters in the respective compartments. Conclusions: Based on the employed methodology, no indication for an impairment of the cerebral microstructural tissue integrity in MRI-negative patients with focal epilepsy was found in this study. Further research will be necessary to identify relevant factors and mechanisms contributing to microstructural brain tissue damage in various subgroups of patients with epilepsy.

5.
J Neurol Neurosurg Psychiatry ; 94(10): 786-791, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37169544

RESUMEN

BACKGROUND: In relapsing-remitting multiple sclerosis (RRMS), cortical grey matter pathology relevantly contributes to long-term disability. Still, diffuse cortical inflammation cannot be detected with conventional MRI. OBJECTIVE: We aimed to assess microstructural damage of cortical grey matter over time and the relation to clinical disability as well as relapse activity in patients with RRMS using multiparametric quantitative (q)MRI techniques. METHODS: On 40 patients with RRMS and 33 age-matched and sex-matched healthy controls, quantitative T1, T2, T2* and proton density (PD) mapping was performed at baseline and follow-up after 2 years. Cortical qMRI parameter values were extracted with the FreeSurfer software using a surface-based approach. QMRI parameters, cortical thickness and white matter lesion (WML) load, as well as Expanded Disability Status Scale (EDSS) and relapse rate, were compared between time points. RESULTS: Over 2 years, significant increases of T1 (p≤0.001), PD (p≤0.001) and T2 (p=0.005) values were found in the patient, but not in the control group. At decreased relapse rate over time (p=0.001), cortical thickness, WML volume and EDSS remained unchanged. CONCLUSION: Despite clinical stability, cortical T1, T2 and PD values increased over time, indicating progressive demyelination and increasing water content. These parameters represent promising surrogate parameters of diffuse cortical inflammation in RRMS.


Asunto(s)
Personas con Discapacidad , Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Sustancia Blanca , Humanos , Preescolar , Sustancia Gris/patología , Esclerosis Múltiple Recurrente-Remitente/diagnóstico por imagen , Esclerosis Múltiple Recurrente-Remitente/patología , Imagen por Resonancia Magnética/métodos , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Esclerosis Múltiple/patología , Encéfalo/patología
6.
Magn Reson Med ; 90(1): 103-116, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36912496

RESUMEN

PURPOSE: Aim of this study was to develop a reliable B1 mapping method for brain imaging based on vendor MR sequences available on clinical scanners. Correction procedures for B0 distortions and slice profile imperfections are proposed, together with a phantom experiment for deriving the approximate time-bandwidth-product (TBP) of the excitation pulse, which is usually not known for vendor sequences. METHODS: The double angle method was used, acquiring two gradient echo echo-planar imaging data sets with different excitation angles. A correction factor C (B1 , TBP, B0 ) was derived from simulations for converting double angle method signal quotients into bias-free B1 maps. In vitro and in vivo tests compare results with reference B1 maps based on an established in-house sequence. RESULTS: The simulation shows that C has a negligible B1 dependence, allowing for a polynomial approximation of C (TBP, B0 ). Signal quotients measured in a phantom experiment with known TBP reconfirm the simulation results. In vitro and in vivo B1 maps based on the proposed method, assuming TBP = 5.8 as derived from a phantom experiment, match closely the reference B1 maps. Analysis without B0 correction shows marked deviations in areas of distorted B0 , highlighting the importance of this correction. CONCLUSION: Double angle method-based B1 mapping was set up for vendor gradient echo-echo-planar imaging sequences, using a correction procedure for slice profile imperfections and B0 distortions. This will help to set up quantitative MRI studies on clinical scanners with release sequences, as the method does not require knowledge of the exact RF-pulse profiles or the use of in-house sequences.


Asunto(s)
Imagen Eco-Planar , Imagen por Resonancia Magnética , Imagen Eco-Planar/métodos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Cabeza , Fantasmas de Imagen , Procesamiento de Imagen Asistido por Computador/métodos
7.
Cereb Circ Cogn Behav ; 4: 100162, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36851996

RESUMEN

Background: We aimed to investigate whether combined phosphorous (31P) magnetic resonance spectroscopic imaging (MRSI) and quantitative T 2 ' mapping are able to detect alterations of the cerebral oxygen extraction fraction (OEF) and intracellular pH (pHi) as markers the of cellular energy metabolism in cerebral small vessel disease (SVD). Materials and methods: 32 patients with SVD and 17 age-matched healthy control subjects were examined with 3-dimensional 31P MRSI and oxygenation-sensitive quantitative T 2 ' mapping (1/ T 2 '  = 1/T2* - 1/T2) at 3 Tesla (T). PHi was measured within the white matter hyperintensities (WMH) in SVD patients. Quantitative T 2 ' values were averaged across the entire white matter (WM). Furthermore, T 2 ' values were extracted from normal-appearing WM (NAWM) and the WMH and compared between patients and controls. Results: Quantitative T 2 ' values were significantly increased across the entire WM and in the NAWM in patients compared to control subjects (149.51 ± 16.94 vs. 138.19 ± 12.66 ms and 147.45 ± 18.14 vs. 137.99 ± 12.19 ms, p < 0.05). WM T 2 ' values correlated significantly with the WMH load (ρ=0.441, p = 0.006). Increased T 2 ' was significantly associated with more alkaline pHi (ρ=0.299, p < 0.05). Both T 2 ' and pHi were significantly positively correlated with vascular pulsatility in the distal carotid arteries (ρ=0.596, p = 0.001 and ρ=0.452, p = 0.016). Conclusions: This exploratory study found evidence of impaired cerebral OEF in SVD, which is associated with intracellular alkalosis as an adaptive mechanism. The employed techniques provide new insights into the pathophysiology of SVD with regard to disease-related consequences on the cellular metabolic state.

8.
Attach Hum Dev ; 25(1): 35-49, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-33464174

RESUMEN

Physical separation from caregivers activates attachment-related behaviors. However, neural underpinnings of this biological mechanism in humans and their development are poorly understood. We examined via functional MRI brain responses to pictorial representations of separation as a function of attachment-security, attachment-avoidance, and attachment-anxiety measured using the Child-Attachment-Interview, in 30 typically developing children (9-11 years). Attachment-related stimuli elicited enhanced activation in the precuneus, temporoparietal junction area, and medial superior frontal gyrus (described as mentalization network). More negatively rated attachment stimuli yielded increased activity in the inferior frontal gyrus/anterior insula and dorsal anterior cingulate cortex/ACC. Furthermore, ACC responses to attachment-related as compared to control stimuli were positively correlated with attachment-security and negatively correlated with attachment-avoidance. Our findings suggest that processing of separation cues elicits increased mentalization-related processing in children and activation of the salience network with increased negative valence of stimuli. Avoidant vs. securely attached children differentially activate ACC-dependent processes of affective evaluation.


Asunto(s)
Mapeo Encefálico , Señales (Psicología) , Niño , Humanos , Apego a Objetos , Encéfalo/fisiología , Imagen por Resonancia Magnética
9.
Cereb Cortex ; 33(8): 4606-4611, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36169574

RESUMEN

There is emerging evidence that sampling the blood-oxygen-level-dependent (BOLD) response with high temporal resolution opens up new avenues to study the in vivo functioning of the human brain with functional magnetic resonance imaging. Because the speed of sampling and the signal level are intrinsically connected in magnetic resonance imaging via the T1 relaxation time, optimization efforts usually must make a trade-off to increase the temporal sampling rate at the cost of the signal level. We present a method, which combines a sparse event-related stimulus paradigm with subsequent data reshuffling to achieve high temporal resolution while maintaining high signal levels (HiHi). The proof-of-principle is presented by separately measuring the single-voxel time course of the BOLD response in both the primary visual and primary motor cortices with 100-ms temporal resolution.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Hemodinámica/fisiología , Oxígeno
10.
Front Neurol ; 12: 675123, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34335445

RESUMEN

Introduction: Ischemic and hemorrhagic strokes in the brainstem and cerebellum with injury to the functional loop of the Guillain-Mollaret triangle (GMT) can trigger a series of events that result in secondary trans-synaptic neurodegeneration of the inferior olivary nucleus. In an unknown percentage of patients, this leads to a condition called hypertrophic olivary degeneration (HOD). Characteristic clinical symptoms of HOD progress slowly over months and consist of a rhythmic palatal tremor, vertical pendular nystagmus, and Holmes tremor of the upper limbs. Diffusion Tensor Imaging (DTI) with tractography is a promising method to identify functional pathway lesions along the cerebello-thalamo-cortical connectivity and to generate a deeper understanding of the HOD pathophysiology. The incidence of HOD development following stroke and the timeline of clinical symptoms have not yet been determined in prospective studies-a prerequisite for the surveillance of patients at risk. Methods and Analysis: Patients with ischemic and hemorrhagic strokes in the brainstem and cerebellum with a topo-anatomical relation to the GMT are recruited within certified stroke units of the Interdisciplinary Neurovascular Network of the Rhine-Main. Matching lesions are identified using a predefined MRI template. Eligible patients are prospectively followed up and present at 4 and 8 months after the index event. During study visits, a clinical neurological examination and brain MRI, including high-resolution T2-, proton-density-weighted imaging, and DTI tractography, are performed. Fiberoptic endoscopic evaluation of swallowing is optional if palatal tremor is encountered. Study Outcomes: The primary endpoint of this prospective clinical multicenter study is to determine the frequency of radiological HOD development in patients with a posterior fossa stroke affecting the GMT at 8 months after the index event. Secondary endpoints are identification of (1) the timeline and relevance of clinical symptoms, (2) lesion localizations more prone to HOD occurrence, and (3) the best MR-imaging regimen for HOD identification. Additionally, (4) DTI tractography data are used to analyze individual pathway lesions. The aim is to contribute to the epidemiological and pathophysiological understanding of HOD and hereby facilitate future research on therapeutic and prophylactic measures. Clinical Trial Registration: HOD-IS is a registered trial at https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00020549.

11.
Cancers (Basel) ; 13(16)2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34439213

RESUMEN

Quantitative MRI allows to probe tissue properties by measuring relaxation times and may thus detect subtle changes in tissue composition. In this work we analyzed different relaxation times (T1, T2, T2* and T2') and histological features in 321 samples that were acquired from 25 patients with newly diagnosed IDH wild-type glioma. Quantitative relaxation times before intravenous application of gadolinium-based contrast agent (GBCA), T1 relaxation time after GBCA as well as the relative difference between T1 relaxation times pre-to-post GBCA (T1rel) were compared with histopathologic features such as the presence of tumor cells, cell and vessel density, endogenous markers for hypoxia and cell proliferation. Image-guided stereotactic biopsy allowed for the attribution of each tissue specimen to its corresponding position in the respective relaxation time map. Compared to normal tissue, T1 and T2 relaxation times and T1rel were prolonged in samples containing tumor cells. The presence of vascular proliferates was associated with higher T1rel values. Immunopositivity for lactate dehydrogenase A (LDHA) involved slightly longer T1 relaxation times. However, low T2' values, suggesting high amounts of deoxyhemoglobin, were found in samples with elevated vessel densities, but not in samples with increased immunopositivity for LDHA. Taken together, some of our observations were consistent with previous findings but the correlation of quantitative MRI and histologic parameters did not confirm all our pathophysiology-based assumptions.

12.
NMR Biomed ; 34(7): e4524, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33942941

RESUMEN

Amide proton transfer-chemical exchange saturation transfer (APT-CEST) imaging provides important information for the diagnosis and monitoring of tumors. For such analysis, complete coverage of the brain is advantageous, especially when registration is performed with other magnetic resonance (MR) modalities, such as MR spectroscopy (MRS). However, the acquisition of Z-spectra across several slices via multislice imaging may be time-consuming. Therefore, in this paper, we present a new approach for fast multislice imaging, allowing us to acquire 16 slices per frequency offset within 8 s. The proposed fast CEST-EPI sequence employs a presaturation module, which drives the magnetization into the steady-state equilibrium for the first frequency offset. A second module, consisting of a single CEST pulse (for maintaining the steady-state) followed by an EPI acquisition, passes through a loop to acquire multiple slices and adjacent frequency offsets. Thus, the whole Z-spectrum can be recorded much faster than the conventional saturation scheme, which employs a presaturation for each single frequency offset. The validation of the CEST sequence parameters was performed by using the conventional saturation scheme. Subsequently, the proposed and a modified version of the conventional CEST sequence were compared in vitro on a phantom with different T1 times and in vivo on a brain tumor patient. No significant differences between both sequences could be found in vitro. The in vivo data yielded almost identical MTRasym contrasts for the white and gray matter as well as for tumor tissue. Our results show that the proposed fast CEST-EPI sequence allows for rapid data acquisition and provides similar CEST contrasts as the modified conventional scheme while reducing the scanning time by approximately 50%.


Asunto(s)
Amidas/química , Imagen por Resonancia Magnética , Protones , Glioblastoma/diagnóstico por imagen , Glioblastoma/patología , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Humanos , Fantasmas de Imagen , Estadística como Asunto , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología
13.
Seizure ; 87: 94-102, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33752160

RESUMEN

OBJECTIVE: The present study validates the results of automated hippocampal subfield segmentation with histopathology in epilepsy patients undergoing epilepsy surgery. METHODS: We performed an automated hippocampal subfield segmentation on presurgical three-dimensional, T1-weighted magnetization Prepared Rapid Acquisition of Gradient Echoes Magnetic Resonance Imaging (MRI) data of 25 patients with unilateral mesial temporal lobe epilepsy due to hippocampal sclerosis (HS), using Freesurfer Version 6.0. The resulting volumes of cornu ammonis (CA) subfields CA1, CA2/3, CA4 and the dentate gyrus (DG) were compared to the histopathological cell count. RESULTS: We found a significant correlation between histopathology in subregion CA2 and automated segmentation of subregion CA1 (p = 0.0062), CA2/3 (p = 0.004), CA4 (p = 0.0062) and the DG (p = 0.0054), between histopathology in CA3 and automated segmentation of CA1 (p = 0.0132), CA2/3 (p = 0.0004), CA4 (p = 0.0032) and the DG (p = 0.0037), as well as between histopathology in the DG and automated segmentation of CA1 (p = 0.0115), CA2/3 (p < 0.0001), CA4 (p < 0.0001) and the DG (p = 0.0001). The histopathological finding of HS type 1 could correctly be classified in all cases on MRI. SIGNIFICANCE: The present study shows significant correlations between histopathological evaluation and results of the automated segmentation of the hippocampus, thereby validating the automated segmentation method. As the differential involvement of different hippocampal subfields may be associated with clinical parameters and the outcome after epilepsy surgery, the automated segmentation is also promising for prognostic purposes.


Asunto(s)
Epilepsia del Lóbulo Temporal , Recuento de Células , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/cirugía , Hipocampo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética
14.
Front Neurol ; 12: 640239, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33763021

RESUMEN

Magnetic resonance imaging (MRI) is the gold standard imaging technique for diagnosis and monitoring of many neurological diseases. However, the application of conventional MRI in clinical routine is mainly limited to the visual detection of macroscopic tissue pathology since mixed tissue contrasts depending on hardware and protocol parameters hamper its application for the assessment of subtle or diffuse impairment of the structural tissue integrity. Multiparametric quantitative (q)MRI determines tissue parameters quantitatively, enabling the detection of microstructural processes related to tissue remodeling in aging and neurological diseases. In contrast to measuring tissue atrophy via structural imaging, multiparametric qMRI allows for investigating biologically distinct microstructural processes, which precede changes of the tissue volume. This facilitates a more comprehensive characterization of tissue alterations by revealing early impairment of the microstructural integrity and specific disease-related patterns. So far, qMRI techniques have been employed in a wide range of neurological diseases, including in particular conditions with inflammatory, cerebrovascular and neurodegenerative pathology. Numerous studies suggest that qMRI might add valuable information, including the detection of microstructural tissue damage in areas appearing normal on conventional MRI and unveiling the microstructural correlates of clinical manifestations. This review will give an overview of current qMRI techniques, the most relevant tissue parameters and potential applications in neurological diseases, such as early (differential) diagnosis, monitoring of disease progression, and evaluating effects of therapeutic interventions.

15.
J Cereb Blood Flow Metab ; 41(7): 1767-1777, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33327818

RESUMEN

Previous diffusion tensor imaging (DTI) studies indicate that impaired microstructural integrity of the normal-appearing white matter (NAWM) is related to cognitive impairment in cerebral small vessel disease (SVD). This study aimed to investigate whether quantitative T2 relaxometry is a suitable imaging biomarker for the assessment of tissue changes related to cognitive abnormalities in patients with SVD. 39 patients and 18 age-matched healthy control subjects underwent 3 T magnetic resonance imaging (MRI) with T2-weighted multiple spin echo sequences for T2 relaxometry and DTI sequences, as well as comprehensive cognitive assessment. Averaged quantitative T2, fractional anisotropy (FA) and mean diffusivity (MD) were determined in the NAWM and related to cognitive parameters controlling for age, normalized brain volume, white matter hyperintensity volume and other conventional SVD markers. In SVD patients, quantitative T2 values were significantly increased compared to controls (p = 0.002) and significantly negatively correlated with the global cognitive performance (r= -0.410, p = 0.014) and executive function (r= -0.399, p = 0.016). DTI parameters did not correlate with cognitive function. T2 relaxometry of the NAWM seems to be sensitive to microstructural tissue damage associated with cognitive impairment in SVD and might be a promising imaging biomarker for evaluation of disease progression and possible effects of therapeutic interventions.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales/complicaciones , Disfunción Cognitiva/patología , Imagen de Difusión Tensora/métodos , Sustancia Blanca/fisiopatología , Anciano , Estudios de Casos y Controles , Disfunción Cognitiva/etiología , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Pruebas Neuropsicológicas
16.
J Cereb Blood Flow Metab ; 41(1): 67-81, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-31987009

RESUMEN

Leptomeningeal collateral supply is considered pivotal in steno-occlusive vasculopathy to prevent chronic microstructural ischaemic tissue damage. The aim of this study was to assess the alleged protective role of leptomeningeal collaterals in patients with unilateral high-grade steno-occlusive vasculopathy using quantitative (q)T2 mapping and perfusion-weighted imaging (PWI)-based collateral abundance. High-resolution qT2 was used to estimate microstructural damage of the segmented normal-appearing cortex. Volumetric abundance of collaterals was assessed based on PWI source data. The ratio relative cerebral blood flow/relative cerebral blood volume (rCBF/rCBV) as a surrogate of relative cerebral perfusion pressure (rCPP) was used to investigate the intravascular hemodynamic competency of pial collateral vessels and the hemodynamic state of brain parenchyma. Within the dependent vascular territory with increased cortical qT2 values (P = 0.0001) compared to the contralateral side, parenchymal rCPP was decreased (P = 0.0001) and correlated negatively with increase of qT2 (P < 0.05). Furthermore, volumetric abundance of adjacent leptomeningeal collaterals was significantly increased (P < 0.01) and negatively correlated with changes of parenchymal rCPP (P = 0.01). Microstructural cortical damage is closely related to restrictions of antegrade blood flow despite increased pial collateral vessel abundance. Therefore, increased leptomeningeal collateral supply cannot necessarily be regarded as a sign of effective compensation in patients with high-grade steno-occlusive vasculopathy.


Asunto(s)
Mapeo Encefálico/métodos , Circulación Cerebrovascular/fisiología , Circulación Colateral/fisiología , Angiografía por Resonancia Magnética/métodos , Imagen de Perfusión/métodos , Accidente Cerebrovascular/fisiopatología , Femenino , Humanos , Masculino , Persona de Mediana Edad
17.
Magn Reson Med ; 85(2): 883-896, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32886374

RESUMEN

PURPOSE: Auditory functional MRI (fMRI) often uses silent inter-volume delays for stimulus presentation. However, maintaining the steady-state of the magnetization usually requires constant delays. Here, a novel acquisition scheme dubbed "pre-Saturated EPI using Multiple delays in Steady-state" (SEPIMS) is proposed, using spin saturation at a fixed delay before each volume to maintain steady-state conditions, independent of previous spin history. This concept allows for variable inter-volume delays and thus for flexible stimulus design in auditory fMRI. The purpose was to compare the signal stability of SEPIMS and conventional sparse EPI (CS-EPI). METHODS: The saturation module comprises two non-selective adiabatic saturation pulses. The efficiency of the saturation and its effect on the SEPIMS signal stability is tested in vitro and in vivo. RESULTS: Data show that SEPIMS yields the same signal stability as CS-EPI, even for extreme variations between inter-volume delay durations. However, dual saturation pulses are required to achieve sufficiently high saturation efficiency in compartments with long T1 values. Importantly, spoiler gradient pulses after the EPI readout have to be optimized to avoid eddy-current-induced image distortions. CONCLUSION: The proposed SEPIMS sequence maintains high signal stability in the presence of variable inter-volume durations, thus allowing for flexible stimulus design.


Asunto(s)
Imagen Eco-Planar , Imagen por Resonancia Magnética
18.
Clin Neuroradiol ; 31(3): 709-720, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32638029

RESUMEN

PURPOSE: To investigate cortical thickness and cortical quantitative T2 values as imaging markers of microstructural tissue damage in patients with unilateral high-grade internal carotid artery occlusive disease (ICAOD). METHODS: A total of 22 patients with ≥70% stenosis (mean age 64.8 years) and 20 older healthy control subjects (mean age 70.8 years) underwent structural magnetic resonance imaging (MRI) and high-resolution quantitative (q)T2 mapping. Generalized linear mixed models (GLMM) controlling for age and white matter lesion volume were employed to investigate the effect of ICAOD on imaging parameters of cortical microstructural integrity in multivariate analyses. RESULTS: There was a significant main effect (p < 0.05) of the group (patients/controls) on both cortical thickness and cortical qT2 values with cortical thinning and increased cortical qT2 in patients compared to controls, irrespective of the hemisphere. The presence of upstream carotid stenosis had a significant main effect on cortical qT2 values (p = 0.01) leading to increased qT2 in the poststenotic hemisphere, which was not found for cortical thickness. The GLMM showed that in general cortical thickness was decreased and cortical qT2 values were increased with increasing age (p < 0.05). CONCLUSION: Unilateral high-grade carotid occlusive disease is associated with widespread cortical thinning and prolongation of cortical qT2, presumably reflecting hypoperfusion-related microstructural cortical damage similar to accelerated aging of the cerebral cortex. Cortical thinning and increase of cortical qT2 seem to reflect different aspects and different pathophysiological states of cortical degeneration. Quantitative T2 mapping might be a sensitive imaging biomarker for early cortical microstructural damage.


Asunto(s)
Enfermedades de las Arterias Carótidas , Estenosis Carotídea , Anciano , Envejecimiento , Enfermedades de las Arterias Carótidas/diagnóstico por imagen , Estenosis Carotídea/diagnóstico por imagen , Corteza Cerebral/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Persona de Mediana Edad
19.
Hum Brain Mapp ; 41(18): 5240-5254, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-32870583

RESUMEN

An important measure in pain research is the intensity of nociceptive stimuli and their cortical representation. However, there is evidence of different cerebral representations of nociceptive stimuli, including the fact that cortical areas recruited during processing of intranasal nociceptive chemical stimuli included those outside the traditional trigeminal areas. Therefore, the aim of this study was to investigate the major cerebral representations of stimulus intensity associated with intranasal chemical trigeminal stimulation. Trigeminal stimulation was achieved with carbon dioxide presented to the nasal mucosa. Using a single-blinded, randomized crossover design, 24 subjects received nociceptive stimuli with two different stimulation paradigms, depending on the just noticeable differences in the stimulus strengths applied. Stimulus-related brain activations were recorded using functional magnetic resonance imaging with event-related design. Brain activations increased significantly with increasing stimulus intensity, with the largest cluster at the right Rolandic operculum and a global maximum in a smaller cluster at the left lower frontal orbital lobe. Region of interest analyses additionally supported an activation pattern correlated with the stimulus intensity at the piriform cortex as an area of special interest with the trigeminal input. The results support the piriform cortex, in addition to the secondary somatosensory cortex, as a major area of interest for stimulus strength-related brain activation in pain models using trigeminal stimuli. This makes both areas a primary objective to be observed in human experimental pain settings where trigeminal input is used to study effects of analgesics.


Asunto(s)
Mapeo Encefálico , Corteza Cerebral/fisiología , Nocicepción/fisiología , Corteza Piriforme/fisiología , Corteza Somatosensorial/fisiología , Nervio Trigémino/fisiología , Adulto , Dióxido de Carbono/administración & dosificación , Corteza Cerebral/diagnóstico por imagen , Estudios Cruzados , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Mucosa Nasal/efectos de los fármacos , Corteza Piriforme/diagnóstico por imagen , Método Simple Ciego , Corteza Somatosensorial/diagnóstico por imagen , Adulto Joven
20.
Aging (Albany NY) ; 12(16): 16195-16210, 2020 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-32852283

RESUMEN

Understanding the microstructural changes related to physiological aging of the cerebral cortex is pivotal to differentiate healthy aging from neurodegenerative processes. The aim of this study was to investigate the age-related global changes of cortical microstructure and regional patterns using multiparametric quantitative MRI (qMRI) in healthy subjects with a wide age range. 40 healthy participants (age range: 2nd to 8th decade) underwent high-resolution qMRI including T1, PD as well as T2, T2* and T2' mapping at 3 Tesla. Cortical reconstruction was performed with the FreeSurfer toolbox, followed by tests for correlations between qMRI parameters and age. Cortical T1 values were negatively correlated with age (p=0.007) and there was a widespread age-related decrease of cortical T1 involving the frontal and the parietotemporal cortex, while T2 was correlated positively with age, both in frontoparietal areas and globally (p=0.004). Cortical T2' values showed the most widespread associations across the cortex and strongest correlation with age (r= -0.724, p=0.0001). PD and T2* did not correlate with age. Multiparametric qMRI allows to characterize cortical aging, unveiling parameter-specific patterns. Quantitative T2' mapping seems to be a promising imaging biomarker of cortical age-related changes, suggesting that global cortical iron deposition is a prominent process in healthy aging.


Asunto(s)
Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/fisiología , Envejecimiento Saludable/fisiología , Imagen por Resonancia Magnética , Adulto , Anciano , Corteza Cerebral/metabolismo , Estudios Transversales , Femenino , Envejecimiento Saludable/metabolismo , Humanos , Hierro/metabolismo , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...