RESUMEN
Age-related macular degeneration (AMD), a leading cause of blindness, initiates in the outer-blood-retina-barrier (oBRB) formed by the retinal pigment epithelium (RPE), Bruch's membrane, and choriocapillaris. The mechanisms of AMD initiation and progression remain poorly understood owing to the lack of physiologically relevant human oBRB models. To this end, we engineered a native-like three-dimensional (3D) oBRB tissue (3D-oBRB) by bioprinting endothelial cells, pericytes, and fibroblasts on the basal side of a biodegradable scaffold and establishing an RPE monolayer on top. In this 3D-oBRB model, a fully-polarized RPE monolayer provides barrier resistance, induces choriocapillaris fenestration, and supports the formation of Bruch's-membrane-like structure by inducing changes in gene expression in cells of the choroid. Complement activation in the 3D-oBRB triggers dry AMD phenotypes (including subRPE lipid-rich deposits called drusen and choriocapillaris degeneration), and HIF-α stabilization or STAT3 overactivation induce choriocapillaris neovascularization and type-I wet AMD phenotype. The 3D-oBRB provides a physiologically relevant model to studying RPE-choriocapillaris interactions under healthy and diseased conditions.
Asunto(s)
Degeneración Macular , Epitelio Pigmentado de la Retina , Humanos , Epitelio Pigmentado de la Retina/metabolismo , Células Endoteliales , Coroides/metabolismo , Retina/metabolismo , Degeneración Macular/metabolismoRESUMEN
Age-related Macular Degeneration (AMD), a blinding eye disease, is characterized by pathological protein- and lipid-rich drusen deposits underneath the retinal pigment epithelium (RPE) and atrophy of the RPE monolayer in advanced disease stages - leading to photoreceptor cell death and vision loss. Currently, there are no drugs that stop drusen formation or RPE atrophy in AMD. Here we provide an iPSC-RPE AMD model that recapitulates drusen and RPE atrophy. Drusen deposition is dependent on AMD-risk-allele CFH(H/H) and anaphylatoxin triggered alternate complement signaling via the activation of NF-κB and downregulation of autophagy pathways. Through high-throughput screening we identify two drugs, L-745,870, a dopamine receptor antagonist, and aminocaproic acid, a protease inhibitor that reduce drusen deposits and restore RPE epithelial phenotype in anaphylatoxin challenged iPSC-RPE with or without the CFH(H/H) genotype. This comprehensive iPSC-RPE model replicates key AMD phenotypes, provides molecular insight into the role of CFH(H/H) risk-allele in AMD, and discovers two candidate drugs to treat AMD.
Asunto(s)
Ácido Aminocaproico/farmacología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Degeneración Macular/tratamiento farmacológico , Piridinas/farmacología , Pirroles/farmacología , Epitelio Pigmentado de la Retina/efectos de los fármacos , Alelos , Factor H de Complemento/genética , Factor H de Complemento/metabolismo , Evaluación Preclínica de Medicamentos , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Degeneración Macular/genética , Degeneración Macular/metabolismo , Modelos Biológicos , Fenotipo , Epitelio Pigmentado de la Retina/metabolismoRESUMEN
MicroRNA-204 (miR-204) is expressed in pulmonary, renal, mammary and eye tissue, and its reduction can result in multiple diseases including cancer. We first generated miR-204-/- mice to study the impact of miR-204 loss on retinal and retinal pigment epithelium (RPE) structure and function. The RPE is fundamentally important for maintaining the health and integrity of the retinal photoreceptors. miR-204-/- eyes evidenced areas of hyper-autofluorescence and defective photoreceptor digestion, along with increased microglia migration to the RPE. Migratory Iba1+ microglial cells were localized to the RPE apical surface where they participated in the phagocytosis of photoreceptor outer segments (POSs) and contributed to a persistent build-up of rhodopsin. These structural, molecular and cellular outcomes were accompanied by decreased light-evoked electrical responses from the retina and RPE. In parallel experiments, we suppressed miR-204 expression in primary cultures of human RPE using anti-miR-204. In vitro suppression of miR-204 in human RPE similarly showed abnormal POS clearance and altered expression of autophagy-related proteins and Rab22a, a regulator of endosome maturation. Together, these in vitro and in vivo experiments suggest that the normally high levels of miR-204 in RPE can mitigate disease onset by preventing generation of oxidative stress and inflammation originating from intracellular accumulation of undigested photoreactive POS lipids. More generally, these results implicate RPE miR-204-mediated regulation of autophagy and endolysosomal interaction as a critical determinant of normal RPE/retina structure and function.
Asunto(s)
MicroARNs/metabolismo , Fagocitosis/fisiología , Fagosomas/metabolismo , Retina/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Animales , Células Cultivadas , Quimiocinas/metabolismo , Citocinas/metabolismo , Electrofisiología , Femenino , Citometría de Flujo , Humanos , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Masculino , Ratones , Ratones Noqueados , MicroARNs/genética , Fagocitosis/genética , Fagosomas/fisiología , Retina/fisiología , Epitelio Pigmentado de la Retina/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa InversaRESUMEN
Considerable progress has been made in testing stem cell-derived retinal pigment epithelium (RPE) as a potential therapy for age-related macular degeneration (AMD). However, the recent reports of oncogenic mutations in induced pluripotent stem cells (iPSCs) underlie the need for robust manufacturing and functional validation of clinical-grade iPSC-derived RPE before transplantation. Here, we developed oncogenic mutation-free clinical-grade iPSCs from three AMD patients and differentiated them into clinical-grade iPSC-RPE patches on biodegradable scaffolds. Functional validation of clinical-grade iPSC-RPE patches revealed specific features that distinguished transplantable from nontransplantable patches. Compared to RPE cells in suspension, our biodegradable scaffold approach improved integration and functionality of RPE patches in rats and in a porcine laser-induced RPE injury model that mimics AMD-like eye conditions. Our results suggest that the in vitro and in vivo preclinical functional validation of iPSC-RPE patches developed here might ultimately be useful for evaluation and optimization of autologous iPSC-based therapies.
Asunto(s)
Degeneración Retiniana/terapia , Epitelio Pigmentado de la Retina/citología , Células Madre/citología , Animales , Modelos Animales de Enfermedad , Degeneración Macular/patología , Degeneración Macular/terapia , Ratas , Degeneración Retiniana/patología , PorcinosRESUMEN
Primary cilia are sensory organelles that protrude from the cell membrane. Defects in the primary cilium cause ciliopathy disorders, with retinal degeneration as a prominent phenotype. Here, we demonstrate that the retinal pigment epithelium (RPE), essential for photoreceptor development and function, requires a functional primary cilium for complete maturation and that RPE maturation defects in ciliopathies precede photoreceptor degeneration. Pharmacologically enhanced ciliogenesis in wild-type induced pluripotent stem cells (iPSC)-RPE leads to fully mature and functional cells. In contrast, ciliopathy patient-derived iPSC-RPE and iPSC-RPE with a knockdown of ciliary-trafficking protein remain immature, with defective apical processes, reduced functionality, and reduced adult-specific gene expression. Proteins of the primary cilium regulate RPE maturation by simultaneously suppressing canonical WNT and activating PKCδ pathways. A similar cilium-dependent maturation pathway exists in lung epithelium. Our results provide insights into ciliopathy-induced retinal degeneration, demonstrate a developmental role for primary cilia in epithelial maturation, and provide a method to mature iPSC epithelial cells for clinical applications.
Asunto(s)
Ciliopatías/metabolismo , Degeneración Retiniana/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Animales , Cilios/genética , Cilios/metabolismo , Cilios/patología , Ciliopatías/genética , Ciliopatías/patología , Ciliopatías/terapia , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Células Madre Pluripotentes Inducidas/trasplante , Ratones , Ratones Noqueados , Proteína Quinasa C-delta/genética , Proteína Quinasa C-delta/metabolismo , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/patología , Degeneración Retiniana/genética , Degeneración Retiniana/patología , Degeneración Retiniana/terapia , Epitelio Pigmentado de la Retina/patologíaRESUMEN
Definitive endoderm (DE) differentiation from mouse embryonic stem cell (mESC) monolayer cultures has been limited by poor cell survival or low efficiency. Recently, a combination of TGFß and Wnt activation with BMP inhibition improved DE induction in embryoid bodies cultured in suspension. Based on these observations we developed a protocol to efficiently induce DE cells in monolayer cultures of mESCs. We obtained a good cell yield with 54.92% DE induction as shown by Foxa2, Sox17, Cxcr4 and E-Cadherin expression. These DE-cells could be further differentiated into posterior foregut and pancreatic phenotypes using a culture protocol initially developed for human embryonic stem cell (hESC) differentiation. In addition, this mESC-derived DE gave rise to hepatocyte-like cells after exposure to BMP and FGF ligands. Our data therefore indicate a substantial improvement of monolayer DE induction from mESCs and support the concept that differentiation conditions for mESC-derived DE are similar to those for hESCs. As mESCs are easier to maintain and manipulate in culture compared to hESCs, and considering the shorter duration of embryonic development in the mouse, this method of efficient DE induction on monolayer will promote the development of new differentiation protocols to obtain DE-derivatives, like pancreatic beta-cells, for future use in cell replacement therapies.