Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Curr Biol ; 34(6): R244-R246, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38531317

RESUMEN

During cancer progression, tumor cells need to disseminate by remodeling the extracellular tumor matrix. A recent study sheds light on the intricate cooperation between caveolae and invadosomes that facilitates the spread of cancer cells.


Asunto(s)
Podosomas , Humanos , Podosomas/patología , Caveolas , Matriz Extracelular , Invasividad Neoplásica/patología , Crimen
2.
J Mater Chem B ; 11(39): 9431-9442, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37655486

RESUMEN

3D-printed cell models are currently in the spotlight of medical research. Whilst significant advances have been made, there are still aspects that require attention to achieve more realistic models which faithfully represent the in vivo environment. In this work we describe the production of an artery model with cyclic expansive properties, capable of mimicking the different physical forces and stress factors that cells experience in physiological conditions. The artery wall components are reproduced using 3D printing of thermoresponsive polymers with inorganic nanoparticles (NPs) representing the outer tunica adventitia, smooth muscle cells embedded in extracellular matrix representing the tunica media, and finally a monolayer of endothelial cells as the tunica intima. Cyclic expansion can be induced thanks to the inclusion of photo-responsive plasmonic NPs embedded within the thermoresponsive ink composition, resulting in changes in the thermoresponsive polymer hydration state and hence volume, in a stimulated on-off manner. By changing the thermoresponsive polymer composition, the transition temperature and pulsatility can be efficiently tuned. We show the direct effect of cyclic expansion and contraction on the overlying cell layers by analyzing transcriptional changes in mechanoresponsive mesenchymal genes associated with such microenvironmental physical cues. The technique described herein involving stimuli-responsive 3D printed tissue constructs, also described as four- dimensional (4D) printing, offers a novel approach for the production of dynamic biomodels.


Asunto(s)
Células Endoteliales , Nanopartículas , Polímeros/farmacología , Matriz Extracelular , Arterias
3.
Cells ; 12(6)2023 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-36980283

RESUMEN

The plasma membrane (PM) is subjected to multiple mechanical forces, and it must adapt and respond to them. PM invaginations named caveolae, with a specific protein and lipid composition, play a crucial role in this mechanosensing and mechanotransduction process. They respond to PM tension changes by flattening, contributing to the buffering of high-range increases in mechanical tension, while novel structures termed dolines, sharing Caveolin1 as the main component, gradually respond to low and medium forces. Caveolae are associated with different types of cytoskeletal filaments, which regulate membrane tension and also initiate multiple mechanotransduction pathways. Caveolar components sense the mechanical properties of the substrate and orchestrate responses that modify the extracellular matrix (ECM) according to these stimuli. They perform this function through both physical remodeling of ECM, where the actin cytoskeleton is a central player, and via the chemical alteration of the ECM composition by exosome deposition. Here, we review mechanotransduction regulation mediated by caveolae and caveolar components, focusing on how mechanical cues are transmitted through the cellular cytoskeleton and how caveolae respond and remodel the ECM.


Asunto(s)
Caveolas , Mecanotransducción Celular , Caveolas/metabolismo , Mecanotransducción Celular/fisiología , Membrana Celular , Matriz Extracelular/metabolismo , Citoesqueleto/metabolismo
4.
Nat Cell Biol ; 25(1): 120-133, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36543981

RESUMEN

In response to different types and intensities of mechanical force, cells modulate their physical properties and adapt their plasma membrane (PM). Caveolae are PM nano-invaginations that contribute to mechanoadaptation, buffering tension changes. However, whether core caveolar proteins contribute to PM tension accommodation independently from the caveolar assembly is unknown. Here we provide experimental and computational evidence supporting that caveolin-1 confers deformability and mechanoprotection independently from caveolae, through modulation of PM curvature. Freeze-fracture electron microscopy reveals that caveolin-1 stabilizes non-caveolar invaginations-dolines-capable of responding to low-medium mechanical forces, impacting downstream mechanotransduction and conferring mechanoprotection to cells devoid of caveolae. Upon cavin-1/PTRF binding, doline size is restricted and membrane buffering is limited to relatively high forces, capable of flattening caveolae. Thus, caveolae and dolines constitute two distinct albeit complementary components of a buffering system that allows cells to adapt efficiently to a broad range of mechanical stimuli.


Asunto(s)
Caveolas , Caveolina 1 , Caveolas/metabolismo , Caveolina 1/metabolismo , Mecanotransducción Celular , Membrana Celular/metabolismo , Proteínas/metabolismo
5.
Comput Struct Biotechnol J ; 21: 224-237, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36544477

RESUMEN

Caveolae are nanoscopic and mechanosensitive invaginations of the plasma membrane, essential for adipocyte biology. Transmission electron microscopy (TEM) offers the highest resolution for caveolae visualization, but provides complicated images that are difficult to classify or segment using traditional automated algorithms such as threshold-based methods. As a result, the time-consuming tasks of localization and quantification of caveolae are currently performed manually. We used the Keras library in R to train a convolutional neural network with a total of 36,000 TEM image crops obtained from adipocytes previously annotated manually by an expert. The resulting model can differentiate caveolae from non-caveolae regions with a 97.44% accuracy. The predictions of this model are further processed to obtain caveolae central coordinate detection and cytoplasm boundary delimitation. The model correctly finds negligible caveolae predictions in images from caveolae depleted Cav1-/- adipocytes. In large reconstructions of adipocyte sections, model and human performances are comparable. We thus provide a new tool for accurate caveolae automated analysis that could speed up and assist in the characterization of the cellular mechanical response.

6.
Elife ; 112022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36264062

RESUMEN

Cells are subjected to multiple mechanical inputs throughout their lives. Their ability to detect these environmental cues is called mechanosensing, a process in which integrins play an important role. During cellular mechanosensing, plasma membrane (PM) tension is adjusted to mechanical stress through the buffering action of caveolae; however, little is known about the role of caveolae in early integrin mechanosensing regulation. Here, we show that Cav1KO fibroblasts increase adhesion to FN-coated beads when pulled with magnetic tweezers, as compared to wild type fibroblasts. This phenotype is Rho-independent and mainly derived from increased active ß1-integrin content on the surface of Cav1KO fibroblasts. Florescence recovery after photobleaching analysis and endocytosis/recycling assays revealed that active ß1-integrin is mostly endocytosed through the clathrin independent carrier/glycosylphosphatidyl inositol (GPI)-enriched endocytic compartment pathway and is more rapidly recycled to the PM in Cav1KO fibroblasts, in a Rab4 and PM tension-dependent manner. Moreover, the threshold for PM tension-driven ß1-integrin activation is lower in Cav1KO mouse embryonic fibroblasts (MEFs) than in wild type MEFs, through a mechanism dependent on talin activity. Our findings suggest that caveolae couple mechanical stress to integrin cycling and activation, thereby regulating the early steps of the cellular mechanosensing response.


Cells can physically sense their immediate environment by pulling and pushing through integrins, a type of proteins which connects the inside and outside of a cell by being studded through the cellular membrane. This sensing role can only be performed when integrins are in an active state. Two main mechanisms regulate the relative amount of active integrins: one controls the activation of the proteins already at the cell surface; the other, known as recycling, impacts how many new integrins are delivered to the membrane. Both processes are affected by changes in cell membrane tension, which is itself controlled by dimples (or 'caveolae' ­ little caves in Latin) present in the cell surface. Caveolae limit acute changes in tension by taking in (pinching off the dimples) or releasing (dimples flattening) segments of the membrane. However, it is still unclear how integrins and caveolae mechanically interact to regulate the ability for a cell to read its environment. To understand this process, Lolo et al. focused on mouse cells genetically manipulated to not build caveolae on their surfaces, and which cannot properly sense mechanical changes in their surroundings. These were exposed to beads covered in an integrin-binding protein and manipulated using magnetic tweezers. The manipulation showed that mutated cells bound to the beads more strongly than non-modified cells, indicating that they had more active integrins on their surface. This change was due to both an accelerated recycling mechanism (which resulted in more integrin being brought at the surface) and an increase in integrin activation (which was triggered by a higher membrane tension). Caveolae therefore couple mechanical inputs to integrin recycling and activation. Healthy tissues rely on cells correctly sensing physical changes in their environment so they can mount an appropriate response. This ability, for example, is altered in cancerous cells which start to form tumours. The findings by Lolo et al. bring together physics and biology to provide new insights into the potential mechanisms causing such impairments.


Asunto(s)
Fibroblastos , Integrinas , Animales , Ratones , Estrés Mecánico , Integrinas/metabolismo , Fibroblastos/metabolismo , Caveolas/metabolismo , Integrina beta1/metabolismo , Adhesión Celular/fisiología
7.
J Cell Biol ; 221(5)2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35416931

RESUMEN

Programmed cell death-ligand 1 (PD-L1)-mediated T cell inhibition through PD-1 is a key checkpoint frequently exploited by tumors to evade immunity. In this issue, Wang et al. (2022. J. Cell Biol.https://doi.org/10.1083/jcb.202108083) reveal an unexpected role for PD-L1 in promoting tumor cell front-rear polarity and directionally persistent cell migration, independently of PD-1.


Asunto(s)
Antígeno B7-H1 , Neoplasias , Antígeno B7-H1/genética , Movimiento Celular , Humanos , Receptor de Muerte Celular Programada 1 , Linfocitos T , Escape del Tumor
8.
Nat Commun ; 13(1): 1174, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35246520

RESUMEN

Mechanical forces regulate multiple essential pathways in the cell. The nuclear translocation of mechanoresponsive transcriptional regulators is an essential step for mechanotransduction. However, how mechanical forces regulate the nuclear import process is not understood. Here, we identify a highly mechanoresponsive nuclear transport receptor (NTR), Importin-7 (Imp7), that drives the nuclear import of YAP, a key regulator of mechanotransduction pathways. Unexpectedly, YAP governs the mechanoresponse of Imp7 by forming a YAP/Imp7 complex that responds to mechanical cues through the Hippo kinases MST1/2. Furthermore, YAP behaves as a dominant cargo of Imp7, restricting the Imp7 binding and the nuclear translocation of other Imp7 cargoes such as Smad3 and Erk2. Thus, the nuclear import process is an additional regulatory layer indirectly regulated by mechanical cues, which activate a preferential Imp7 cargo, YAP, which competes out other cargoes, resulting in signaling crosstalk.


Asunto(s)
Núcleo Celular , Mecanotransducción Celular , Transporte Activo de Núcleo Celular , Núcleo Celular/metabolismo , Carioferinas/genética , Carioferinas/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo
9.
Mol Ther Oncolytics ; 23: 311-329, 2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34786475

RESUMEN

Drug resistance has become one of the largest challenges for cancer chemotherapies. Under certain conditions, cancer cells hijack autophagy to cope with therapeutic stress, which largely undermines the chemo-therapeutic efficacy. Currently, biomarkers indicative of autophagy-derived drug resistance remain largely inclusive. Here, we report a novel role of lipid rafts/cholesterol-enriched membrane micro-domains (CEMMs) in autophagosome biogenesis and doxorubicin resistance in breast tumors. We showed that CEMMs are required for the interaction of VAMP3 with syntaxin 6 (STX6, a cholesterol-binding SNARE protein). Upon disruption of CEMM, VAMP3 is released from STX6, resulting in the trafficking of ATG16L1-containing vesicles to recycling endosomes and subsequent autophagosome biogenesis. Furthermore, we found that CEMM marker CAV1 is decreased in breast cancer patients and that the CEMM deficiency-induced autophagy is related to doxorubicin resistance, which is overcome by autophagy inhibition. Taken together, we propose a novel model whereby CEMMs in recycling endosomes support the VAMP3 and STX6 interaction and function as barriers to limit the activity of VAMP3 in autophagic vesicle fusion, thus CEMM deficiency promotes autophagosome biogenesis and doxorubicin resistance in breast tumors.

10.
Curr Opin Cell Biol ; 68: 113-123, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33188985

RESUMEN

Mechanical forces (extracellular matrix stiffness, vascular shear stress, and muscle stretching) reaching the plasma membrane (PM) determine cell behavior. Caveolae are PM-invaginated nanodomains with specific lipid and protein composition. Being highly abundant in mechanically challenged tissues (muscles, lungs, vessels, and adipose tissues), they protect cells from mechanical stress damage. Caveolae flatten upon increased PM tension, enabling both force sensing and accommodation, critical for cell mechanoprotection and homeostasis. Thus, caveolae are highly plastic, ranging in complexity from flattened membranes to vacuolar invaginations surrounded by caveolae-rosettes-which also contribute to mechanoprotection. Caveolar components crosstalk with mechanotransduction pathways and recent studies show that they translocate from the PM to the nucleus to convey stress information. Furthermore, caveolae components can regulate membrane traffic from/to the PM to adapt to environmental mechanical forces. The interdependence between lipids and caveolae starts to be understood, and the relevance of caveolae-dependent membrane trafficking linked to mechanoadaption to different physiopathological processes is emerging.


Asunto(s)
Transporte Biológico , Caveolas/metabolismo , Membrana Celular/metabolismo , Mecanotransducción Celular , Animales , Endocitosis , Matriz Extracelular/metabolismo , Humanos , Estrés Mecánico
11.
Science ; 370(6514)2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-33060333

RESUMEN

Lipid droplets (LDs) are the major lipid storage organelles of eukaryotic cells and a source of nutrients for intracellular pathogens. We demonstrate that mammalian LDs are endowed with a protein-mediated antimicrobial capacity, which is up-regulated by danger signals. In response to lipopolysaccharide (LPS), multiple host defense proteins, including interferon-inducible guanosine triphosphatases and the antimicrobial cathelicidin, assemble into complex clusters on LDs. LPS additionally promotes the physical and functional uncoupling of LDs from mitochondria, reducing fatty acid metabolism while increasing LD-bacterial contacts. Thus, LDs actively participate in mammalian innate immunity at two levels: They are both cell-autonomous organelles that organize and use immune proteins to kill intracellular pathogens as well as central players in the local and systemic metabolic adaptation to infection.


Asunto(s)
Bacterias/inmunología , Interacciones Huésped-Patógeno/inmunología , Inmunidad Innata , Gotas Lipídicas/inmunología , Animales , Péptidos Catiónicos Antimicrobianos/metabolismo , Ácidos Grasos/metabolismo , GTP Fosfohidrolasas/metabolismo , Células HEK293 , Humanos , Lipopolisacáridos/inmunología , Macrófagos/inmunología , Macrófagos/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/inmunología , Catelicidinas
12.
Traffic ; 21(1): 181-185, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31448516

RESUMEN

Caveolae are an abundant, but enigmatic, plasma membrane feature of vertebrate cells. In this brief commentary, the authors attempt to answer some key questions related to the formation and function of caveolae based on round-table discussions at the first EMBO Workshop on Caveolae held in France in May 2019.


Asunto(s)
Caveolas , Caveolinas , Animales , Membrana Celular
13.
Nat Commun ; 10(1): 5828, 2019 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-31862885

RESUMEN

Cells remodel their structure in response to mechanical strain. However, how mechanical forces are translated into biochemical signals that coordinate the structural changes observed at the plasma membrane (PM) and the underlying cytoskeleton during mechanoadaptation is unclear. Here, we show that PM mechanoadaptation is controlled by a tension-sensing pathway composed of c-Abl tyrosine kinase and membrane curvature regulator FBP17. FBP17 is recruited to caveolae to induce the formation of caveolar rosettes. FBP17 deficient cells have reduced rosette density, lack PM tension buffering capacity under osmotic shock, and cannot adapt to mechanical strain. Mechanistically, tension is transduced to the FBP17 F-BAR domain by direct phosphorylation mediated by c-Abl, a mechanosensitive molecule. This modification inhibits FBP17 membrane bending activity and releases FBP17-controlled inhibition of mDia1-dependent stress fibers, favoring membrane adaptation to increased tension. This mechanoprotective mechanism adapts the cell to changes in mechanical tension by coupling PM and actin cytoskeleton remodeling.


Asunto(s)
Caveolas/metabolismo , Proteínas de Unión a Ácidos Grasos/metabolismo , Mecanotransducción Celular , Proteínas Proto-Oncogénicas c-abl/metabolismo , Fibras de Estrés/metabolismo , Caveolas/ultraestructura , Proteínas de Unión a Ácidos Grasos/genética , Fibroblastos , Técnicas de Inactivación de Genes , Células HEK293 , Células HeLa , Humanos , Microscopía Electrónica , Fosforilación , ARN Interferente Pequeño/metabolismo , Fibras de Estrés/ultraestructura , Estrés Mecánico
14.
ACS Omega ; 4(2): 2719-2727, 2019 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-31459508

RESUMEN

Synthesizing iron oxide nanoparticles for positive contrast in magnetic resonance imaging is the most promising approach to bring this nanomaterial back to the clinical field. The success of this approach depends on several aspects: the longitudinal relaxivity values, the complexity of the synthetic protocol, and the reproducibility of the synthesis. Here, we show our latest results on this goal. We have studied the effect of Cu doping on the physicochemical, magnetic, and relaxometric properties of iron oxide nanoparticles designed to provide positive contrast in magnetic resonance imaging. We have used a one-step, 10 min synthesis to produce nanoparticles with excellent colloidal stability. We have synthesized three different Cu-doped iron oxide nanoparticles showing modest to very large longitudinal relaxivity values. Finally, we have demonstrated the in vivo use of these kinds of nanoparticles both in angiography and targeted molecular imaging.

16.
PLoS Comput Biol ; 14(11): e1006238, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30500821

RESUMEN

Toxicity is an important factor in failed drug development, and its efficient identification and prediction is a major challenge in drug discovery. We have explored the potential of microscopy images of fluorescently labeled nuclei for the prediction of toxicity based on nucleus pattern recognition. Deep learning algorithms obtain abstract representations of images through an automated process, allowing them to efficiently classify complex patterns, and have become the state-of-the art in machine learning for computer vision. Here, deep convolutional neural networks (CNN) were trained to predict toxicity from images of DAPI-stained cells pre-treated with a set of drugs with differing toxicity mechanisms. Different cropping strategies were used for training CNN models, the nuclei-cropping-based Tox_CNN model outperformed other models classifying cells according to health status. Tox_CNN allowed automated extraction of feature maps that clustered compounds according to mechanism of action. Moreover, fully automated region-based CNNs (RCNN) were implemented to detect and classify nuclei, providing per-cell toxicity prediction from raw screening images. We validated both Tox_(R)CNN models for detection of pre-lethal toxicity from nuclei images, which proved to be more sensitive and have broader specificity than established toxicity readouts. These models predicted toxicity of drugs with mechanisms of action other than those they had been trained for and were successfully transferred to other cell assays. The Tox_(R)CNN models thus provide robust, sensitive, and cost-effective tools for in vitro screening of drug-induced toxicity. These models can be adopted for compound prioritization in drug screening campaigns, and could thereby increase the efficiency of drug discovery.


Asunto(s)
Núcleo Celular/efectos de los fármacos , Aprendizaje Profundo , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Algoritmos , Automatización , Colorantes Fluorescentes/química , Interpretación de Imagen Asistida por Computador/métodos , Indoles/química , Redes Neurales de la Computación
17.
Cell Rep ; 25(6): 1622-1635.e6, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30404014

RESUMEN

The transcriptional regulator YAP orchestrates many cellular functions, including tissue homeostasis, organ growth control, and tumorigenesis. Mechanical stimuli are a key input to YAP activity, but the mechanisms controlling this regulation remain largely uncharacterized. We show that CAV1 positively modulates the YAP mechanoresponse to substrate stiffness through actin-cytoskeleton-dependent and Hippo-kinase-independent mechanisms. RHO activity is necessary, but not sufficient, for CAV1-dependent mechanoregulation of YAP activity. Systematic quantitative interactomic studies and image-based small interfering RNA (siRNA) screens provide evidence that this actin-dependent regulation is determined by YAP interaction with the 14-3-3 protein YWHAH. Constitutive YAP activation rescued phenotypes associated with CAV1 loss, including defective extracellular matrix (ECM) remodeling. CAV1-mediated control of YAP activity was validated in vivo in a model of pancreatitis-driven acinar-to-ductal metaplasia. We propose that this CAV1-YAP mechanotransduction system controls a significant share of cell programs linked to these two pivotal regulators, with potentially broad physiological and pathological implications.


Asunto(s)
Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Caveolina 1/metabolismo , Proteínas de Ciclo Celular/metabolismo , Mecanotransducción Celular , Proteínas 14-3-3/metabolismo , Animales , Núcleo Celular/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Células HeLa , Humanos , Metaplasia , Ratones Endogámicos C57BL , Ratones Noqueados , Pancreatitis/patología , Fosfoserina/metabolismo , Polimerizacion , Mapeo de Interacción de Proteínas , Especificidad por Sustrato , Proteínas Señalizadoras YAP
18.
Nat Commun ; 9(1): 4217, 2018 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-30310066

RESUMEN

Plasma membrane tension regulates many key cellular processes. It is modulated by, and can modulate, membrane trafficking. However, the cellular pathway(s) involved in this interplay is poorly understood. Here we find that, among a number of endocytic processes operating simultaneously at the cell surface, a dynamin independent pathway, the CLIC/GEEC (CG) pathway, is rapidly and specifically upregulated upon a sudden reduction of tension. Moreover, inhibition (activation) of the CG pathway results in lower (higher) membrane tension. However, alteration in membrane tension does not directly modulate CG endocytosis. This requires vinculin, a mechano-transducer recruited to focal adhesion in adherent cells. Vinculin acts by controlling the levels of a key regulator of the CG pathway, GBF1, at the plasma membrane. Thus, the CG pathway directly regulates membrane tension and is in turn controlled via a mechano-chemical feedback inhibition, potentially leading to homeostatic regulation of membrane tension in adherent cells.


Asunto(s)
Membrana Celular/metabolismo , Dinaminas/metabolismo , Endocitosis , Retroalimentación Fisiológica , Mecanotransducción Celular , Animales , Fenómenos Biomecánicos , Adhesión Celular , Ratones , Transducción de Señal , Temperatura , Vinculina/metabolismo
19.
Sci Rep ; 8(1): 2338, 2018 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-29402961

RESUMEN

Caveolin-1 (CAV1) is over-expressed in prostate cancer (PCa) and is associated with adverse prognosis, but the molecular mechanisms linking CAV1 expression to disease progression are poorly understood. Extensive gene expression correlation analysis, quantitative multiplex imaging of clinical samples, and analysis of the CAV1-dependent transcriptome, supported that CAV1 re-programmes TGFß signalling from tumour suppressive to oncogenic (i.e. induction of SLUG, PAI-1 and suppression of CDH1, DSP, CDKN1A). Supporting such a role, CAV1 knockdown led to growth arrest and inhibition of cell invasion in prostate cancer cell lines. Rationalized RNAi screening and high-content microscopy in search for CAV1 upstream regulators revealed integrin beta1 (ITGB1) and integrin associated proteins as CAV1 regulators. Our work suggests TGFß signalling and beta1 integrins as potential therapeutic targets in PCa over-expressing CAV1, and contributes to better understand the paradoxical dual role of TGFß in tumour biology.


Asunto(s)
Caveolina 1/metabolismo , Regulación Neoplásica de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Neoplasias de la Próstata/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Línea Celular Tumoral , Humanos , Masculino , Oncogenes , Fenotipo , Neoplasias de la Próstata/genética , Transducción de Señal , Regulación hacia Arriba
20.
Nat Immunol ; 18(10): 1150-1159, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28805811

RESUMEN

Caveolin-1 (Cav1) regulates the nanoscale organization and compartmentalization of the plasma membrane. Here we found that Cav1 controlled the distribution of nanoclusters of isotype-specific B cell antigen receptors (BCRs) on the surface of B cells. In mature B cells stimulated with antigen, the immunoglobulin M BCR (IgM-BCR) gained access to lipid domains enriched for GM1 glycolipids, by a process that was dependent on the phosphorylation of Cav1 by the Src family of kinases. Antigen-induced reorganization of nanoclusters of IgM-BCRs and IgD-BCRs regulated BCR signaling in vivo. In immature Cav1-deficient B cells, altered nanoscale organization of IgM-BCRs resulted in a failure of receptor editing and a skewed repertoire of B cells expressing immunoglobulin-µ heavy chains with hallmarks of poly- and auto-reactivity, which ultimately led to autoimmunity in mice. Thus, Cav1 emerges as a cell-intrinsic regulator that prevents B cell-induced autoimmunity by means of its role in plasma-membrane organization.


Asunto(s)
Linfocitos B/inmunología , Linfocitos B/metabolismo , Caveolina 1/metabolismo , Tolerancia Inmunológica , Receptores de Antígenos de Linfocitos B/metabolismo , Animales , Autoinmunidad/genética , Autoinmunidad/inmunología , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/metabolismo , Caveolina 1/genética , Expresión Génica , Tolerancia Inmunológica/genética , Inmunoglobulina D/inmunología , Inmunoglobulina D/metabolismo , Inmunoglobulina M/inmunología , Inmunoglobulina M/metabolismo , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Ratones , Ratones Noqueados , Ratones Transgénicos , Fosforilación , Unión Proteica , Receptores de Antígenos de Linfocitos B/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA