Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Sci Adv ; 10(37): eadi7673, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39270021

RESUMEN

Dysregulation of the mitogen-activated protein kinase interacting kinases 1/2 (MNK1/2)-eukaryotic initiation factor 4E (eIF4E) signaling axis promotes breast cancer progression. MNK1 is known to influence cancer stem cells (CSCs); self-renewing populations that support metastasis, recurrence, and chemotherapeutic resistance, making them a clinically relevant target. The precise function of MNK1 in regulating CSCs, however, remains unexplored. Here, we generated MNK1 knockout cancer cell lines, resulting in diminished CSC properties in vitro and slowed tumor growth in vivo. Using a multiomics approach, we functionally demonstrated that loss of MNK1 restricts tumor cell metabolic adaptation by reducing glycolysis and increasing dependence on oxidative phosphorylation. Furthermore, MNK1-null breast and pancreatic tumor cells demonstrated suppressed metastasis to the liver, but not the lung. Analysis of The Cancer Genome Atlas (TCGA) data from breast cancer patients validated the positive correlation between MNK1 and glycolytic enzyme protein expression. This study defines metabolic perturbations as a previously unknown consequence of targeting MNK1/2, which may be therapeutically exploited.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Neoplasias Hepáticas , Proteínas Serina-Treonina Quinasas , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundario , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Animales , Línea Celular Tumoral , Ratones , Femenino , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/genética , Glucólisis , Fosforilación Oxidativa , Transducción de Señal
5.
J Biophotonics ; 17(6): e202300565, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38566461

RESUMEN

This study explored the application of deep learning in second harmonic generation (SHG) microscopy, a rapidly growing area. This study focuses on the impact of glycerol concentration on image noise in SHG microscopy and compares two image restoration techniques: Noise-to-Void 2D (N2V 2D, no reference image restoration) and content-aware image restoration (CARE 2D, full reference image restoration). We demonstrated that N2V 2D effectively restored the images affected by high glycerol concentrations. To reduce sample exposure and damage, this study further addresses low-power SHG imaging by reducing the laser power by 70% using deep learning techniques. CARE 2D excels in preserving detailed structures, whereas N2V 2D maintains natural muscle structure. This study highlights the strengths and limitations of these models in specific SHG microscopy applications, offering valuable insights and potential advancements in the field .


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Relación Señal-Ruido , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía de Generación del Segundo Armónico/métodos , Animales , Aprendizaje Profundo , Especificidad de Órganos
7.
BMJ Open ; 14(3): e081480, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38553056

RESUMEN

OBJECTIVES: Immune checkpoint inhibitors (ICIs) are indicated for metastatic urothelial cancer (mUC), but predictive and prognostic factors are lacking. We investigated clinical variables associated with ICI outcomes. METHODS: We performed a multicentre retrospective cohort study of 135 patients who received ICI for mUC, 2016-2021, at three Canadian centres. Clinical characteristics, body mass index (BMI), metastatic sites, neutrophil-to-lymphocyte ratio (NLR), response and survival were abstracted from chart review. RESULTS: We identified 135 patients and 62% had received ICI as a second-line or later treatment for mUC. A BMI ≥25 was significantly correlated to a higher overall response rate (ORR) (45.4% vs 16.3%, p value=0.020). Patients with BMI ≥30 experienced longer median overall survival (OS) of 24.8 vs 14.4 for 25≤BMI<30 and 8.5 months for BMI <25 (p value=0.012). The ORR was lower in the presence of bone metastases (16% vs 41%, p value=0.006) and liver metastases (16% vs 39%, p value=0.013). Metastatic lymph nodes were correlated with higher ORR (40% vs 20%, p value=0.032). The median OS for bone metastases was 7.3 versus 18 months (p value <0.001). Patients with liver metastases had a median OS of 8.6 versus 15 months (p value=0.006). No difference for lymph nodes metastases (13.5 vs 12.7 months, p value=0.175) was found. NLR ≥4 had worse OS (8.2 vs 17.7 months, p value=0.0001). In multivariate analysis, BMI ≥30, bone metastases, NLR ≥4, performance status ≥2 and line of ICI ≥2 were independent factors for OS. CONCLUSIONS: Our data identified BMI and bone metastases as novel clinical biomarkers that were independently associated with ICI outcomes in mUC. External and prospective validation are warranted.


Asunto(s)
Carcinoma de Células Transicionales , Neoplasias Hepáticas , Neoplasias de la Vejiga Urinaria , Humanos , Canadá , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Estudios Retrospectivos
8.
Cell Biosci ; 14(1): 19, 2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38311785

RESUMEN

BACKGROUND: The tumour microenvironment (TME) consists of tumour-supportive immune cells, endothelial cells, and fibroblasts. PhenoCycler, a high-plex single cell spatial biology imaging platform, is used to characterize the complexity of the TME. Researchers worldwide harvest and bank tissues from mouse models which are employed to model a plethora of human disease. With the explosion of interest in spatial biology, these panoplies of archival tissues provide a valuable resource to answer new questions. Here, we describe our protocols for developing tunable PhenoCycler multiplexed imaging panels and describe our open-source data analysis pipeline. Using these protocols, we used PhenoCycler to spatially resolve the TME of 8 routinely employed pre-clinical models of lymphoma, breast cancer, and melanoma preserved as FFPE. RESULTS: Our data reveal distinct TMEs in the different cancer models that were imaged and show that cell-cell contacts differ depending on the tumour type examined. For instance, we found that the immune infiltration in a murine model of melanoma is altered in cellular organization in melanomas that become resistant to αPD-1 therapy, with depletions in a number of cell-cell interactions. CONCLUSIONS: This work presents a valuable resource study seamlessly adaptable to any field of research involving murine models. The methodology described allows researchers to address newly formed hypotheses using archival materials, bypassing the new to perform new mouse studies.

9.
Int J Hematol ; 119(3): 275-290, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38285120

RESUMEN

Diffuse large B-cell lymphoma (DLBCL) relapses in approximately 40% of patients following frontline therapy. We reported that STAT6D419 mutations are enriched in relapsed/refractory DLBCL (rrDLBCL) samples, suggesting that JAK/STAT signaling plays a role in therapeutic resistance. We hypothesized that STAT6D419 mutations can improve DLBCL cell survival by reprogramming the microenvironment to sustain STAT6 activation. Thus, we investigated the role of STAT6D419 mutations on DLBCL cell growth and its microenvironment. We found that phospho-STAT6D419N was retained in the nucleus longer than phospho-STAT6WT following IL-4 stimulation, and STAT6D419N recognized a more restricted DNA-consensus sequence than STAT6WT. Upon IL-4 induction, STAT6D419N expression led to a higher magnitude of gene expression changes, but in a more selective list of gene targets compared with STATWT. The most significantly expressed genes induced by STAT6D419N were those implicated in survival, proliferation, migration, and chemotaxis, in particular CCL17. This chemokine, also known as TARC, attracts helper T-cells to the tumor microenvironment, especially in Hodgkin's lymphoma. To this end, in DLBCL, phospho-STAT6+ rrDLBCL cells had a greater proportion of infiltrating CD4+ T-cells than phospho-STAT6- tumors. Our findings suggest that STAT6D419 mutations in DLBCL lead to cell autonomous changes, enhanced signaling, and altered composition of the tumor microenvironment.


Asunto(s)
Linfoma de Células B Grandes Difuso , Microambiente Tumoral , Humanos , Microambiente Tumoral/genética , Interleucina-4/genética , Interleucina-4/metabolismo , Interleucina-4/farmacología , Recurrencia Local de Neoplasia , Linfoma de Células B Grandes Difuso/patología , Mutación , Factor de Transcripción STAT6/genética , Factor de Transcripción STAT6/metabolismo
10.
J Clin Invest ; 133(20)2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37616051

RESUMEN

Melanomas reprogram their metabolism to rapidly adapt to therapy-induced stress conditions, allowing them to persist and ultimately develop resistance. We report that a subpopulation of melanoma cells tolerate MAPK pathway inhibitors (MAPKis) through a concerted metabolic reprogramming mediated by peroxisomes and UDP-glucose ceramide glycosyltransferase (UGCG). Compromising peroxisome biogenesis, by repressing PEX3 expression, potentiated the proapoptotic effects of MAPKis via an induction of ceramides, an effect limited by UGCG-mediated ceramide metabolism. Cotargeting PEX3 and UGCG selectively eliminated a subset of metabolically active, drug-tolerant CD36+ melanoma persister cells, thereby sensitizing melanoma to MAPKis and delaying resistance. Increased levels of peroxisomal genes and UGCG were found in patient-derived MAPKi-relapsed melanomas, and simultaneously inhibiting PEX3 and UGCG restored MAPKi sensitivity in multiple models of therapy resistance. Finally, combination therapy consisting of a newly identified inhibitor of the PEX3-PEX19 interaction, a UGCG inhibitor, and MAPKis demonstrated potent antitumor activity in preclinical melanoma models, thus representing a promising approach for melanoma treatment.


Asunto(s)
Melanoma , Peroxisomas , Humanos , Peroxisomas/metabolismo , Metabolismo de los Lípidos , Melanoma/genética , Ceramidas/farmacología , Ceramidas/metabolismo
11.
Nat Rev Cancer ; 23(6): 408-425, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37142795

RESUMEN

Cells can rapidly adjust their proteomes in dynamic environments by regulating mRNA translation. There is mounting evidence that dysregulation of mRNA translation supports the survival and adaptation of cancer cells, which has stimulated clinical interest in targeting elements of the translation machinery and, in particular, components of the eukaryotic initiation factor 4F (eIF4F) complex such as eIF4E. However, the effect of targeting mRNA translation on infiltrating immune cells and stromal cells in the tumour microenvironment (TME) has, until recently, remained unexplored. In this Perspective article, we discuss how eIF4F-sensitive mRNA translation controls the phenotypes of key non-transformed cells in the TME, with an emphasis on the underlying therapeutic implications of targeting eIF4F in cancer. As eIF4F-targeting agents are in clinical trials, we propose that a broader understanding of their effect on gene expression in the TME will reveal unappreciated therapeutic vulnerabilities that could be used to improve the efficacy of existing cancer therapies.


Asunto(s)
Factor 4F Eucariótico de Iniciación , Neoplasias , Humanos , Factor 4F Eucariótico de Iniciación/genética , Factor 4F Eucariótico de Iniciación/metabolismo , Microambiente Tumoral/genética , Biosíntesis de Proteínas , Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Neoplasias/genética
12.
Biomed Opt Express ; 14(5): 2181-2195, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37206132

RESUMEN

Tumors, their microenvironment, and the mechanisms by which collagen morphology changes throughout cancer progression have recently been a topic of interest. Second harmonic generation (SHG) and polarization second harmonic (P-SHG) microscopy are label-free, hallmark methods that can highlight this alteration in the extracellular matrix (ECM). This article uses automated sample scanning SHG and P-SHG microscopy to investigate ECM deposition associated with tumors residing in the mammary gland. We show two different analysis approaches using the acquired images to distinguish collagen fibrillar orientation changes in the ECM. Lastly, we apply a supervised deep-learning model to classify naïve and tumor-bearing mammary gland SHG images. We benchmark the trained model using transfer learning with the well-known MobileNetV2 architecture. By fine-tuning the different parameters of these models, we show a trained deep-learning model that suits such a small dataset with 73% accuracy.

13.
Mol Cancer Ther ; 22(2): 192-204, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36722142

RESUMEN

Aberrant cell-cycle progression is characteristic of melanoma, and CDK4/6 inhibitors, such as palbociclib, are currently being tested for efficacy in this disease. Despite the promising nature of CDK4/6 inhibitors, their use as single agents in melanoma has shown limited clinical benefit. Herein, we discovered that treatment of tumor cells with palbociclib induces the phosphorylation of the mRNA translation initiation factor eIF4E. When phosphorylated, eIF4E specifically engenders the translation of mRNAs that code for proteins involved in cell survival. We hypothesized that cancer cells treated with palbociclib use upregulated phosphorylated eIF4E (phospho-eIF4E) to escape the antitumor benefits of this drug. Indeed, we found that pharmacologic or genetic disruption of MNK1/2 activity, the only known kinases for eIF4E, enhanced the ability of palbociclib to decrease clonogenic outgrowth. Moreover, a quantitative proteomics analysis of melanoma cells treated with combined MNK1/2 and CDK4/6 inhibitors showed downregulation of proteins with critical roles in cell-cycle progression and mitosis, including AURKB, TPX2, and survivin. We also observed that palbociclib-resistant breast cancer cells have higher basal levels of phospho-eIF4E, and that treatment with MNK1/2 inhibitors sensitized these palbociclib-resistant cells to CDK4/6 inhibition. In vivo we demonstrate that the combination of MNK1/2 and CDK4/6 inhibition significantly increases the overall survival of mice compared with either monotherapy. Overall, our data support MNK1/2 inhibitors as promising drugs to potentiate the antineoplastic effects of palbociclib and overcome therapy-resistant disease.


Asunto(s)
Neoplasias de la Mama , Melanoma , Inhibidores de Proteínas Quinasas , Animales , Ratones , Factor 4E Eucariótico de Iniciación , Melanoma/tratamiento farmacológico , Piperazinas/farmacología , Piridinas/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Antineoplásicos/farmacología
14.
Methods Mol Biol ; 2614: 17-36, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36587116

RESUMEN

Flow cytometry is an essential tool for studying the tumor-immune microenvironment. It allows us to quickly quantify and identify multiple cell types in a heterogeneous sample. This chapter provides an overview of the flow cytometry instrumentation and a discussion of the appropriate considerations and steps in building a reproducible flow cytometry staining panel. We present an updated lymphoid tissue and solid tumor-infiltrating leucocyte flow cytometry staining protocol and an example of flow cytometry data analysis.


Asunto(s)
Neoplasias , Humanos , Citometría de Flujo/métodos , Microambiente Tumoral , Leucocitos
15.
Methods Mol Biol ; 2614: 171-185, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36587126

RESUMEN

Cancer-associated fibroblasts (CAFs) are vital within the tumor ecosystem, regulating tumor growth, dissemination, and response to therapy through crosstalk with tumor cells, infiltrating immune and vascular cells, as well as components of the extracellular matrix (ECM). CAFs have thus emerged as potential therapeutic targets to complement cancer cell-targeted therapies. To study CAF-tumor cell crosstalk ex vivo, robust isolation methods of primary CAFs are required. Here, we present protocols to isolate, expand, and culture two types of fibroblasts: (1) healthy murine mammary gland fibroblasts, a key source of the CAF population in breast tumor models and (2) CAFs derived from syngeneic murine breast tumors. Isolated mammary fibroblasts and CAFs are suitable for use in a variety of downstream cellular and molecular experiments. We expect these methods to be useful to scientists studying the properties of fibroblasts and CAFs and the interaction between CAFs and the various components of the tumor microenvironment (TME).


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias Mamarias Animales , Ratones , Animales , Ecosistema , Fibroblastos/metabolismo , Neoplasias Mamarias Animales/patología , Microambiente Tumoral
16.
Methods Mol Biol ; 2614: 261-271, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36587130

RESUMEN

The extracellular matrix (ECM) is a molecular scaffold mainly comprising fibrous proteins, glycoproteins, proteoglycans, and polysaccharides. Aside from acting as a structural support, the ECM's composition dictates cell-matrix interactions at the biochemical and biophysical level. In the context of cancer, the ECM is a critical component of the tumor microenvironment (TME) and dysregulation of its deposition and remodelling has been shown to promote tumor onset, progression, and metastasis. Here, we describe a robust protocol for the isolation and subsequent proteomic analysis of the ECM of murine mammary glands, for downstream assays studying the role of the ECM in breast cancer. The protocol yields sufficient protein amounts to enable not only the global quantitation of protein expression but furthermore the enrichment and quantitative analysis of post-translationally modified peptides to study aberrant signalling.


Asunto(s)
Neoplasias de la Mama , Glándulas Mamarias Humanas , Ratones , Animales , Humanos , Femenino , Proteómica , Matriz Extracelular/metabolismo , Proteoglicanos/metabolismo , Neoplasias de la Mama/patología , Proteínas de la Matriz Extracelular/metabolismo , Microambiente Tumoral
17.
Nature ; 611(7935): 405-412, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36323780

RESUMEN

Solid tumours are innervated by nerve fibres that arise from the autonomic and sensory peripheral nervous systems1-5. Whether the neo-innervation of tumours by pain-initiating sensory neurons affects cancer immunosurveillance remains unclear. Here we show that melanoma cells interact with nociceptor neurons, leading to increases in their neurite outgrowth, responsiveness to noxious ligands and neuropeptide release. Calcitonin gene-related peptide (CGRP)-one such nociceptor-produced neuropeptide-directly increases the exhaustion of cytotoxic CD8+ T cells, which limits their capacity to eliminate melanoma. Genetic ablation of the TRPV1 lineage, local pharmacological silencing of nociceptors and antagonism of the CGRP receptor RAMP1 all reduced the exhaustion of tumour-infiltrating leukocytes and decreased the growth of tumours, nearly tripling the survival rate of mice that were inoculated with B16F10 melanoma cells. Conversely, CD8+ T cell exhaustion was rescued in sensory-neuron-depleted mice that were treated with local recombinant CGRP. As compared with wild-type CD8+ T cells, Ramp1-/- CD8+ T cells were protected against exhaustion when co-transplanted into tumour-bearing Rag1-deficient mice. Single-cell RNA sequencing of biopsies from patients with melanoma revealed that intratumoral RAMP1-expressing CD8+ T cells were more exhausted than their RAMP1-negative counterparts, whereas overexpression of RAMP1 correlated with a poorer clinical prognosis. Overall, our results suggest that reducing the release of CGRP from tumour-innervating nociceptors could be a strategy to improve anti-tumour immunity by eliminating the immunomodulatory effects of CGRP on cytotoxic CD8+ T cells.


Asunto(s)
Linfocitos T CD8-positivos , Melanoma , Nociceptores , Animales , Ratones , Péptido Relacionado con Gen de Calcitonina/metabolismo , Péptido Relacionado con Gen de Calcitonina/farmacología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/patología , Melanoma/inmunología , Melanoma/patología , Nociceptores/fisiología , Células Receptoras Sensoriales/metabolismo , Neuritas/metabolismo , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/patología , Tasa de Supervivencia , Melanoma Experimental/inmunología , Melanoma Experimental/patología , Genes RAG-1/genética , Humanos , Biopsia , Pronóstico
18.
PLoS Genet ; 18(11): e1010495, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36374936

RESUMEN

Homologous recombination (HR) plays an essential role in the maintenance of genome stability by promoting the repair of cytotoxic DNA double strand breaks (DSBs). More recently, the HR pathway has emerged as a core component of the response to replication stress, in part by protecting stalled replication forks from nucleolytic degradation. In that regard, the mammalian RAD51 paralogs (RAD51B, RAD51C, RAD51D, XRCC2, and XRCC3) have been involved in both HR-mediated DNA repair and collapsed replication fork resolution. Still, it remains largely obscure how they participate in both processes, thereby maintaining genome stability and preventing cancer development. To gain better insight into their contribution in cellulo, we mapped the proximal interactome of the classical RAD51 paralogs using the BioID approach. Aside from identifying the well-established BCDX2 and CX3 sub-complexes, the spliceosome machinery emerged as an integral component of our proximal mapping, suggesting a crosstalk between this pathway and the RAD51 paralogs. Furthermore, we noticed that factors involved RNA metabolic pathways are significantly modulated within the BioID of the classical RAD51 paralogs upon exposure to hydroxyurea (HU), pointing towards a direct contribution of RNA processing during replication stress. Importantly, several members of these pathways have prognostic potential in breast cancer (BC), where their RNA expression correlates with poorer patient outcome. Collectively, this study uncovers novel functionally relevant partners of the different RAD51 paralogs in the maintenance of genome stability that could be used as biomarkers for the prognosis of BC.


Asunto(s)
Inestabilidad Genómica , Recombinasa Rad51 , Animales , Humanos , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Inestabilidad Genómica/genética , Recombinación Homóloga/genética , Roturas del ADN de Doble Cadena , ARN , Reparación del ADN/genética , Mamíferos/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo
19.
Matrix Biol ; 111: 264-288, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35842012

RESUMEN

The extracellular matrix (ECM) plays critical roles in breast cancer development. Whether ECM composition is regulated by the phosphorylation of eIF4E on serine 209, an event required for tumorigenesis, has not been explored. Herein, we used proteomics and mouse modeling to investigate the impact of mutating serine 209 to alanine on eIF4E (i.e., S209A) on mammary gland (MG) ECM. The proteomic data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD028953. We discovered that S209A knock-in mice, expressing a non-phosphorylatable form of eIF4E, have less collagen-I deposition in native and tumor-bearing MGs, leading to altered tumor cell invasion. Additionally, phospho-eIF4E deficiency impacts collagen topology; fibers at the tumor-stroma boundary in phospho-eIF4E-deficient mice run parallel to the tumor edge but radiate outwards in wild-type mice. Finally, a phospho-eIF4E-deficient tumor microenvironment resists anti-PD-1 therapy-induced collagen deposition, correlating with an increased anti-tumor response to immunotherapy. Clinically, we showed that collagen-I and phospho-eIF4E are positively correlated in human breast cancer samples, and that stromal phospho-eIF4E expression is influenced by tumor proximity. Together, our work defines the importance of phosphorylation of eIF4E on S209 as a regulator of MG collagen architecture in the tumor microenvironment, thereby positioning phospho-eIF4E as a therapeutic target to augment response to therapy.


Asunto(s)
Neoplasias de la Mama , Glándulas Mamarias Humanas , Animales , Neoplasias de la Mama/metabolismo , Colágeno/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Factor 4E Eucariótico de Iniciación/metabolismo , Femenino , Humanos , Glándulas Mamarias Humanas/metabolismo , Ratones , Fosforilación , Proteómica , Serina/metabolismo , Microambiente Tumoral
20.
Sci Immunol ; 7(70): eabi5072, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35363543

RESUMEN

Melanoma is an immunogenic cancer with a high response rate to immune checkpoint inhibitors (ICIs). It harbors a high mutation burden compared with other cancers and, as a result, has abundant tumor-infiltrating lymphocytes (TILs) within its microenvironment. However, understanding the complex interplay between the stroma, tumor cells, and distinct TIL subsets remains a substantial challenge in immune oncology. To properly study this interplay, quantifying spatial relationships of multiple cell types within the tumor microenvironment is crucial. To address this, we used cytometry time-of-flight (CyTOF) imaging mass cytometry (IMC) to simultaneously quantify the expression of 35 protein markers, characterizing the microenvironment of 5 benign nevi and 67 melanomas. We profiled more than 220,000 individual cells to identify melanoma, lymphocyte subsets, macrophage/monocyte, and stromal cell populations, allowing for in-depth spatial quantification of the melanoma microenvironment. We found that within pretreatment melanomas, the abundance of proliferating antigen-experienced cytotoxic T cells (CD8+CD45RO+Ki67+) and the proximity of antigen-experienced cytotoxic T cells to melanoma cells were associated with positive response to ICIs. Our study highlights the potential of multiplexed single-cell technology to quantify spatial cell-cell interactions within the tumor microenvironment to understand immune therapy responses.


Asunto(s)
Melanoma , Humanos , Citometría de Imagen , Linfocitos Infiltrantes de Tumor , Linfocitos T Citotóxicos , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...