Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 13(36): 42357-42369, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34472848

RESUMEN

Herein, novel rodlike CdTe@MPA-PDA particles based on polydopamine (PDA) loaded with CdTe quantum dots (QDs) capped with mercaptopropionic acid (CdTe@MPA QDs) with atypical chemical features are evaluated as a potential actuator for photothermal therapy and oxidative stress induction. Under mild conditions established for the safe and efficient use of lasers, temperature increases of 10.2 and 7.8 °C, photothermal conversion efficiencies of 37.7 and 26.2%, and specific absorption rates of 99 and 69 W/g were obtained for CdTe@MPA-PDA and traditional PDA particles in water, respectively. The particles were set to interact with the human breast adenocarcinoma cell line MDA-MB-231. A significant cellular uptake with the majority of particles colocalized into the lysosomes was obtained at a concentration of 100 µg/mL after 24 h. Additionally, CdTe@MPA-PDA and CdTe@MPA QDs showed significantly different internalization levels and loading kinetics profiles. For the first time, the thermal lens technique was used to demonstrate the stability of particle-like CdTe@MPA-PDA after heating at pH 7 and their migration within the heating region due to the thermodiffusion effect. However, under acidic pH-type lysosomes, a performance decrease in heating was observed, and the chemical feature of the particles was damaged as well. Besides, the internalized rodlike CdTe@MPA-PDA notably enhanced the induction of oxidative stress compared with PDA alone and CdTe@MPA QDs in MDA-MB-231 cells initiating apoptosis. Combining these effects suggests that after meticulous optimizations of the conditions, the CdTe@MPA-PDA particles could be used as a photothermal agent under mild conditions and short incubation time, allowing cytoplasmatic subcellular localization. On the other hand, the same particles act as cell killers by triggering reactive oxygen species after a longer incubation time and lysosomal subcellular localization due to the pH effect on the chemical morphology features of the CdTe@MPA-PDA particles.


Asunto(s)
Antineoplásicos/farmacología , Estrés Oxidativo/efectos de los fármacos , Fármacos Fotosensibilizantes/farmacología , Puntos Cuánticos/química , Especies Reactivas de Oxígeno/metabolismo , Antineoplásicos/química , Antineoplásicos/efectos de la radiación , Apoptosis/efectos de los fármacos , Compuestos de Cadmio/química , Compuestos de Cadmio/efectos de la radiación , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Indoles/química , Indoles/efectos de la radiación , Luz , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/efectos de la radiación , Polímeros/química , Polímeros/efectos de la radiación , Puntos Cuánticos/efectos de la radiación , Telurio/química , Telurio/efectos de la radiación
2.
ACS Appl Mater Interfaces ; 11(30): 26648-26663, 2019 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-31287950

RESUMEN

Despite the potential of magnetic nanoparticles (NPs) to mediate intracellular hyperthermia when exposed to an alternating magnetic field (AMF), several studies indicate that the intracellular heating capacity of magnetic NPs depends on factors such as cytoplasm viscosity, nanoparticle aggregation within subcellular compartments, and dipolar interactions. In this work, we report the design and synthesis of monodispersed flowerlike superparamagnetic manganese iron oxide NPs with maximized SAR (specific absorption rate) and evaluate their efficacy as intracellular heaters in the human tumor-derived glioblastoma cell line U87MG. Three main strategies to tune the particle anisotropy of the core and the surface to reach the maximum heating efficiency were adopted: (1) varying the crystalline anisotropy by inserting a low amount of Mn2+ in the inverse spinel structure, (2) varying the NP shape to add an additional anisotropy source while keeping the superparamagnetic behavior, and (3) maximizing NP-cell affinity through conjugation with a biological targeting molecule to reach the NP concentration required to increase the temperature within the cell. We investigate possible effects produced by these improved NPs under the AMF (f = 96 kHz, H = 47 kA/m) exposure in the glioblastoma cell line U87MG by monitoring the expression of hsp70 gene and reactive oxygen species (ROS) production, as both effects have been described to be induced by increasing the intracellular temperature. The induced cell responses include cellular membrane permeabilization and rupture with concomitant high ROS appearance and hsp70 expression, followed by cell death. The responses were largely limited to cells that contained the NPs exposed to the AMF. Our results indicate that the developed strategies to optimize particle anisotropy in this work are a promising guidance to improve the heating efficiency of magnetic NPs in the human glioma cell line.


Asunto(s)
Citoplasma/efectos de los fármacos , Glioma/terapia , Integrina alfaVbeta3/química , Nanopartículas de Magnetita/química , Anisotropía , Línea Celular Tumoral , Compuestos Férricos/química , Compuestos Férricos/farmacología , Glioma/patología , Calor , Humanos , Ligandos , Campos Magnéticos , Nanopartículas de Magnetita/uso terapéutico
3.
Appl Radiat Isot ; 111: 50-5, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26922395

RESUMEN

Thermoluminescence (TL) characteristics for LiF:Mg, Cu, P, and CaSO4:Dy under the homogeneous field of X-ray beams of diagnostic irradiation and its verification using thermoluminescence dosimetry are presented. The irradiation were performed utilizing a conventional X-ray equipment installed at the Hospital Juárez Norte of México. Different thermoluminescence characteristics of two material were studied, such as batch homogeneity, glow curve, linearity, detection threshold, reproducibility, relative sensitivity and fading. Materials were calibrated in terms of absorbed dose to the standard calibration distance and they were positioned in a generic phantom. The dose analysis, verification and comparison with the measurements obtained by the TLD-100 were performed. Results indicate that the dosimetric peak appears at 202°C and 277.5°C for LiF:Mg, Cu, P and CaSO4:Dy, respectively. TL response as a function of X-ray dose showed a linearity behavior in the very low dose range for all materials. However, the TLD-100 is not accurate for measurements below 4mGy. CaSO4:Dy is 80% more sensitive than TLD-100 and it show the lowest detection threshold, whereas LiF:Mg, Cu, P is 60% more sensitive than TLD-100. All materials showed very good repeatability. Fading for a period of one month at room temperature showed low fading LiF:Mg, Cu, P, medium and high for TLD-100 and CaSO4:Dy. The results suggest that CaSO4:Dy and LiF:Mg, Cu, P are suitable for measurements at low doses used in radiodiagnostic.

4.
Appl Radiat Isot ; 107: 340-345, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26609683

RESUMEN

The response of TLD-100, CaSO4:Dy and LiF:Mg,Cu,P for a range of X-ray low dose was measured. For calibration, the TLDs were arranged at the center of the X-ray field. The dose output of the X-ray machine was determined using an ACCU-Gold. All dosimeters were exposed at the available air kerma values of 14.69 mGy within a field 10×10 cm(2) at 80 cm of SSD. Results of LiF:Mg,Cu,P X-ray irradiated showed 4.8 times higher sensitivity than TLD-100. Meanwhile, TL response of CaSO4:Dy exposed at the same dose was 5.6 time higher than TLD-100. Experimental results show for low dose X-ray measurements a better linearity for LiF:Mg,Cu,P compared with that of TLD-100. CaSO4:Dy showed a linearity from 0.1 to 60 mGy.


Asunto(s)
Dosimetría Termoluminiscente/instrumentación , Sulfato de Calcio , Calibración , Cobre , Disprosio , Humanos , Compuestos de Litio , Magnesio , Fósforo , Dosis de Radiación , Reproducibilidad de los Resultados , Dosimetría Termoluminiscente/estadística & datos numéricos , Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...