Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 20(10): 7129-7135, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-32872789

RESUMEN

2D systems that host 1D helical states are advantageous from the perspective of scalable topological quantum computation when coupled to a superconductor. Graphene is particularly promising for its high electronic quality, its versatility in van der Waals heterostructures, and its electron- and hole-like degenerate 0th Landau level. Here we study a compact double-layer graphene SQUID (superconducting quantum interference device), where the superconducting loop is reduced to the superconducting contacts connecting two parallel graphene Josephson junctions. Despite the small size of the SQUID, it is fully tunable by the independent gate control of the chemical potentials in both layers. Furthermore, both Josephson junctions show a skewed current-phase relationship, indicating the presence of superconducting modes with high transparency. In the quantum Hall regime, we measure a well-defined conductance plateau of 2e2/h indicative of counter-propagating edge channels in the two layers.

2.
Phys Rev Lett ; 125(1): 017701, 2020 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-32678659

RESUMEN

Subgap states in semiconducting-superconducting nanowire hybrid devices are controversially discussed as potential topologically nontrivial quantum states. One source of ambiguity is the lack of an energetically and spatially well defined tunnel spectrometer. Here, we use quantum dots directly integrated into the nanowire during the growth process to perform tunnel spectroscopy of discrete subgap states in a long nanowire segment. In addition to subgap states with a standard magnetic field dependence, we find topologically trivial subgap states that are independent of the external magnetic field, i.e., that are pinned to a constant energy as a function of field. We explain this effect qualitatively and quantitatively by taking into account the strong spin-orbit interaction in the nanowire, which can lead to a decoupling of Andreev bound states from the field due to a spatial spin texture of the confined eigenstates. This result constitutes an important step forward in the research on superconducting subgap states in nanowires, such as Majorana bound states.

3.
Phys Rev Lett ; 121(24): 247703, 2018 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-30608725

RESUMEN

The sensitivity of shot noise to the interplay between Kondo correlations and superconductivity is investigated in a carbon nanotube quantum dot connected to superconducting electrodes. Depending on the gate voltage, the SU(2) and SU(4) Kondo unitary regimes can be clearly identified. We observe enhancement of the shot noise via the Fano factor in the superconducting state. Its divergence at low bias voltage, which is more pronounced in the SU(4) regime than in the SU(2) one, is larger than what is expected from proliferation of multiple Andreev reflections predicted by the existing theories. Our result suggests that the Kondo effect is responsible for this strong enhancement.

4.
Nat Commun ; 8: 15941, 2017 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-28677681

RESUMEN

The protection against backscattering provided by topology is a striking property. In two-dimensional insulators, a consequence of this topological protection is the ballistic nature of the one-dimensional helical edge states. One demonstration of ballisticity is the quantized Hall conductance. Here we provide another demonstration of ballistic transport, in the way the edge states carry a supercurrent. The system we have investigated is a micrometre-long monocrystalline bismuth nanowire with topological surfaces, that we connect to two superconducting electrodes. We have measured the relation between the Josephson current flowing through the nanowire and the superconducting phase difference at its ends, the current-phase relation. The sharp sawtooth-shaped phase-modulated current-phase relation we find demonstrates that transport occurs selectively along two ballistic edges of the nanowire. In addition, we show that a magnetic field induces 0-π transitions and ϕ0-junction behaviour, providing a way to manipulate the phase of the supercurrent-carrying edge states and generate spin supercurrents.

5.
Phys Rev Lett ; 118(19): 196803, 2017 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-28548512

RESUMEN

Universal properties of entangled many-body states are controlled by their symmetry and quantum fluctuations. By the magnetic-field tuning of the spin-orbital degeneracy in a Kondo-correlated quantum dot, we have modified quantum fluctuations to directly measure their influence on the many-body properties along the crossover from SU(4) to SU(2) symmetry of the ground state. High-sensitive current noise measurements combined with the nonequilibrium Fermi liquid theory clarify that the Kondo resonance and electron correlations are enhanced as the fluctuations, measured by the Wilson ratio, increase along the symmetry crossover. Our achievement demonstrates that nonlinear noise constitutes a measure of quantum fluctuations that can be used to tackle quantum phase transitions.

6.
Proc Natl Acad Sci U S A ; 110(25): 10106-10, 2013 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-23733936

RESUMEN

Potential impacts of lightning-induced plasma on cloud ice formation and precipitation have been a subject of debate for decades. Here, we report on the interaction of laser-generated plasma channels with water and ice clouds observed in a large cloud simulation chamber. Under the conditions of a typical storm cloud, in which ice and supercooled water coexist, no direct influence of the plasma channels on ice formation or precipitation processes could be detected. Under conditions typical for thin cirrus ice clouds, however, the plasma channels induced a surprisingly strong effect of ice multiplication. Within a few minutes, the laser action led to a strong enhancement of the total ice particle number density in the chamber by up to a factor of 100, even though only a 10(-9) fraction of the chamber volume was exposed to the plasma channels. The newly formed ice particles quickly reduced the water vapor pressure to ice saturation, thereby increasing the cloud optical thickness by up to three orders of magnitude. A model relying on the complete vaporization of ice particles in the laser filament and the condensation of the resulting water vapor on plasma ions reproduces our experimental findings. This surprising effect might open new perspectives for remote sensing of water vapor and ice in the upper troposphere.


Asunto(s)
Atmósfera/química , Clima , Hielo/análisis , Relámpago , Vapor/análisis , Aerosoles/química , Cámaras de Exposición Atmosférica , Humedad , Rayos Láser , Modelos Teóricos , Dinámicas no Lineales , Óptica y Fotónica/instrumentación , Tecnología de Sensores Remotos/métodos , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...