Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 305
Filtrar
1.
Neuro Oncol ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39093628

RESUMEN

BACKGROUND: Rhabdoid tumors (RT) are aggressive, rare tumors predominantly affecting young children, characterized by bi-allelic SMARCB1 gene inactivation. While most SMARCB1 alterations are acquired de novo, a third of cases exhibit germline alterations, defining Rhabdoid Tumors Predisposition Syndrome (RTPS1). With increased sensitivity of next-generation sequencing (NGS), mosaicisms in genes linked to genetic diseases are more detectable. This study focuses on exploring SMARCB1 germline alterations, notably mosaicism in blood samples of children with RT and in parents, using a custom NGS panel. METHODS: A cohort of 280 children and 140 parents with germline analysis was studied. Germline DNA from 111 children with RT and 32 parents were re-analyzed with a custom NGS panel with 1,500X average depth targeting the SMARCB1 gene to identify intragenic variants not detected with conventional low-sensitivity methods. Follow-up data was obtained for 77 patients. RESULTS: Nine previously undetected mosaicism cases were identified, totaling 17/280 patients with a mosaic variant (6.1%) in the cohort, with variant allele frequencies between 0.9% and 33%, thus highlighting the prior underestimation of its prevalence. Follow-up data showed that 4 out of 7 survivors with mosaic variants developed distinct novel tumors, two sharing SMARCB1 alterations with the initial tumor, emphasizing the potential clinical impact of SMARCB1 mosaicism. CONCLUSIONS: The hitherto underestimated rate of SMARCB1 mosaicism in RT underscores the need for optimized genetic counseling and oncological monitoring. The findings have significant medical implications, considering the dire prognosis of RT.

2.
NPJ Precis Oncol ; 8(1): 147, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39025947

RESUMEN

Metastatic carcinoma of presumed renal origin (rCUP) has recently emerged as a new entity within the heterogeneous entity of Cancers of Unknown Primary (CUP) but their biological features and optimal therapeutic management remain unknown. We report the molecular characteristics and clinical outcome of a series of 25 rCUP prospectively identified within the French National Multidisciplinary Tumor Board for CUP. This cohort strongly suggests that rCUP share similarities with common RCC subtypes and benefit from renal-tailored systemic treatment. This study highlights the importance of integrating clinical and molecular data for optimal diagnosis and management of CUP.

3.
Neurooncol Adv ; 6(1): vdae075, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962751

RESUMEN

Background: ELP1 pathogenic variants (PV) have been recently identified as the most frequent variants predisposing to Sonic Hedgehog (SHH) medulloblastomas (MB); however, guidelines are still lacking for genetic counseling in this new syndrome. Methods: We retrospectively reviewed clinical and genetic data of a French series of 29 ELP1-mutated MB. Results: All patients developed SHH-MB, with a biallelic inactivation of PTCH1 found in 24 tumors. Other recurrent alterations encompassed the TP53 pathway and activation of MYCN/MYCL signaling. The median age at diagnosis was 7.3 years (range: 3-14). ELP1-mutated MB behave as sporadic cases, with similar distribution within clinical and molecular risk groups and similar outcomes (5 y - OS = 86%); no unusual side effect of treatments was noticed. Remarkably, a germline ELP1 PV was identified in all patients with available constitutional DNA (n = 26); moreover, all tested familial trio (n = 11) revealed that the PVs were inherited. Two of the 26 index cases from the French series had a family history of MB; pedigrees from these patients and from 1 additional Dutch family suggested a weak penetrance. Apart from MB, no cancer was associated with ELP1 PVs; second tumors reported in 4 patients occurred within the irradiation fields, in the usual time-lapse for expected radiotherapy-induced neoplasms. Conclusions: The low penetrance, the "at risk' age window limited to childhood and the narrow tumor spectrum, question the actual benefit of genetic screening in these patients and their family. Our results suggest restricting ELP1 germline sequencing to patients with SHH-MB, depending on the parents" request.

4.
Cell Rep Med ; 5(6): 101582, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38781959

RESUMEN

Desmoplastic small round cell tumor (DSRCT) is a rare, aggressive sarcoma driven by the EWSR1::WT1 chimeric transcription factor. Despite this unique oncogenic driver, DSRCT displays a polyphenotypic differentiation of unknown causality. Using single-cell multi-omics on 12 samples from five patients, we find that DSRCT tumor cells cluster into consistent subpopulations with partially overlapping lineage- and metabolism-related transcriptional programs. In vitro modeling shows that high EWSR1::WT1 DNA-binding activity associates with most lineage-related states, in contrast to glycolytic and profibrotic states. Single-cell chromatin accessibility analysis suggests that EWSR1::WT1 binding site variability may drive distinct lineage-related transcriptional programs, supporting some level of cell-intrinsic plasticity. Spatial transcriptomics reveals that glycolytic and profibrotic states specifically localize within hypoxic niches at the periphery of tumor cell islets, suggesting an additional role of tumor cell-extrinsic microenvironmental cues. We finally identify a single-cell transcriptomics-derived epithelial signature associated with improved patient survival, highlighting the clinical relevance of our findings.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Análisis de la Célula Individual , Microambiente Tumoral , Humanos , Análisis de la Célula Individual/métodos , Microambiente Tumoral/genética , Perfilación de la Expresión Génica/métodos , Transcriptoma/genética , Femenino , Masculino , Transcripción Genética , Multiómica
5.
Clin Cancer Res ; 30(15): 3316-3328, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38787533

RESUMEN

PURPOSE: The study of cell-free DNA (cfDNA) enables sequential analysis of tumor cell-specific genetic alterations in patients with neuroblastoma. EXPERIMENTAL DESIGN: Eighteen patients with relapsing neuroblastoma having received lorlatinib, a third-generation ALK inhibitor, were identified (SACHA national registry and/or in the institution). cfDNA was analyzed at relapse for nine patients and sequentially for five patients (blood/bone marrow plasma) by performing whole-genome sequencing library construction followed by ALK-targeted ddPCR of the hotspot mutations [F1174L, R1275Q, and I1170N; variant allele fraction (VAF) detection limit 0.1%] and whole-exome sequencing (WES) to evaluate disease burden and clonal evolution, following comparison with tumor/germline WES. RESULTS: Overall response rate to lorlatinib was 33% (CI, 13%-59%), with response observed in 6/10 cases without versus 0/8 cases with MYCN amplification (MNA). ALK VAFs correlated with the overall clinical disease status, with a VAF < 0.1% in clinical remission, versus higher VAFs (>30%) at progression. Importantly, sequential ALK ddPCR detected relapse earlier than clinical imaging. cfDNA WES revealed new SNVs, not seen in the primary tumor, in all instances of disease progression after lorlatinib treatment, indicating clonal evolution, including alterations in genes linked to tumor aggressivity (TP53) or novel targets (EGFR). Gene pathway analysis revealed an enrichment for genes targeting cell differentiation in emerging clones, and cell adhesion in persistent clones. Evidence of clonal hematopoiesis could be observed in follow-up samples. CONCLUSIONS: We demonstrate the clinical utility of combining ALK cfDNA ddPCR for disease monitoring and cfDNA WES for the study of clonal evolution and resistance mechanisms in patients with neuroblastoma receiving ALK-targeted therapy.


Asunto(s)
Quinasa de Linfoma Anaplásico , Ácidos Nucleicos Libres de Células , Evolución Clonal , Mutación , Neuroblastoma , Humanos , Neuroblastoma/genética , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/patología , Quinasa de Linfoma Anaplásico/genética , Quinasa de Linfoma Anaplásico/antagonistas & inhibidores , Evolución Clonal/genética , Masculino , Femenino , Niño , Preescolar , Ácidos Nucleicos Libres de Células/genética , Aminopiridinas/uso terapéutico , Pirazoles/uso terapéutico , Lactamas , Lactante , Adolescente , Secuenciación del Exoma , Inhibidores de Proteínas Quinasas/uso terapéutico , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/patología , Terapia Molecular Dirigida/métodos , Biomarcadores de Tumor/genética , Secuenciación Completa del Genoma/métodos
6.
J Clin Invest ; 134(9)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38530366

RESUMEN

Aberrant expression of the E26 transformation-specific (ETS) transcription factors characterizes numerous human malignancies. Many of these proteins, including EWS:FLI1 and EWS:ERG fusions in Ewing sarcoma (EwS) and TMPRSS2:ERG in prostate cancer (PCa), drive oncogenic programs via binding to GGAA repeats. We report here that both EWS:FLI1 and ERG bind and transcriptionally activate GGAA-rich pericentromeric heterochromatin. The respective pathogen-like HSAT2 and HSAT3 RNAs, together with LINE, SINE, ERV, and other repeat transcripts, are expressed in EwS and PCa tumors, secreted in extracellular vesicles (EVs), and are highly elevated in plasma of patients with EwS with metastatic disease. High human satellite 2 and 3 (HSAT2,3) levels in EWS:FLI1- or ERG-expressing cells and tumors were associated with induction of G2/M checkpoint, mitotic spindle, and DNA damage programs. These programs were also activated in EwS EV-treated fibroblasts, coincident with accumulation of HSAT2,3 RNAs, proinflammatory responses, mitotic defects, and senescence. Mechanistically, HSAT2,3-enriched cancer EVs induced cGAS-TBK1 innate immune signaling and formation of cytosolic granules positive for double-strand RNAs, RNA-DNA, and cGAS. Hence, aberrantly expressed ETS proteins derepress pericentromeric heterochromatin, yielding pathogenic RNAs that transmit genotoxic stress and inflammation to local and distant sites. Monitoring HSAT2,3 plasma levels and preventing their dissemination may thus improve therapeutic strategies and blood-based diagnostics.


Asunto(s)
Daño del ADN , Vesículas Extracelulares , Proteínas de Fusión Oncogénica , Proteína Proto-Oncogénica c-fli-1 , Proteína EWS de Unión a ARN , Regulador Transcripcional ERG , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Regulador Transcripcional ERG/genética , Regulador Transcripcional ERG/metabolismo , Masculino , Proteína EWS de Unión a ARN/genética , Proteína EWS de Unión a ARN/metabolismo , Proteína Proto-Oncogénica c-fli-1/genética , Proteína Proto-Oncogénica c-fli-1/metabolismo , Sarcoma de Ewing/genética , Sarcoma de Ewing/patología , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/inmunología , Línea Celular Tumoral , ARN Neoplásico/genética , ARN Neoplásico/metabolismo , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Ratones , Animales , Heterocromatina/metabolismo , Heterocromatina/genética
7.
Mol Cancer Ther ; 23(6): 864-876, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38471796

RESUMEN

Rhabdomyosarcoma (RMS) is a highly aggressive pediatric cancer with features of skeletal muscle differentiation. More than 80% of the high-risk patients ultimately fail to respond to chemotherapy treatment, leading to limited therapeutic options and dismal prognostic rates. The lack of response and subsequent tumor recurrence is driven in part by stem cell-like cells, the tumor subpopulation that is enriched after treatment, and characterized by expression of the AXL receptor tyrosine kinase (AXL). AXL mediates survival, migration, and therapy resistance in several cancer types; however, its function in RMS remains unclear. In this study, we investigated the role of AXL in RMS tumorigenesis, migration, and chemotherapy response, and whether targeting of AXL with small-molecule inhibitors could potentiate the efficacy of chemotherapy. We show that AXL is expressed in a heterogeneous manner in patient-derived xenografts (PDX), primary cultures and cell line models of RMS, consistent with its stem cell-state selectivity. By generating a CRISPR/Cas9 AXL knock-out and overexpressing models, we show that AXL contributes to the migratory phenotype of RMS, but not to chemotherapy resistance. Instead, pharmacologic blockade with the AXL inhibitors bemcentinib (BGB324), cabozantinib and NPS-1034 rapidly killed RMS cells in an AXL-independent manner and augmented the efficacy of the chemotherapeutics vincristine and cyclophosphamide. In vivo administration of the combination of bemcentinib and vincristine exerted strong antitumoral activity in a rapidly progressing PDX mouse model, significantly reducing tumor burden compared with single-agent treatment. Collectively, our data identify bemcentinib as a promising drug to improve chemotherapy efficacy in patients with RMS.


Asunto(s)
Tirosina Quinasa del Receptor Axl , Benzocicloheptenos , Proteínas Proto-Oncogénicas , Proteínas Tirosina Quinasas Receptoras , Rabdomiosarcoma , Humanos , Rabdomiosarcoma/tratamiento farmacológico , Rabdomiosarcoma/patología , Rabdomiosarcoma/genética , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Proteínas Tirosina Quinasas Receptoras/metabolismo , Animales , Ratones , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Benzocicloheptenos/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Línea Celular Tumoral , Niño , Proliferación Celular/efectos de los fármacos , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Movimiento Celular/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Triazoles
8.
Elife ; 122024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38488657

RESUMEN

The pelvic organs (bladder, rectum, and sex organs) have been represented for a century as receiving autonomic innervation from two pathways - lumbar sympathetic and sacral parasympathetic - by way of a shared relay, the pelvic ganglion, conceived as an assemblage of sympathetic and parasympathetic neurons. Using single-cell RNA sequencing, we find that the mouse pelvic ganglion is made of four classes of neurons, distinct from both sympathetic and parasympathetic ones, albeit with a kinship to the former, but not the latter, through a complex genetic signature. We also show that spinal lumbar preganglionic neurons synapse in the pelvic ganglion onto equal numbers of noradrenergic and cholinergic cells, both of which therefore serve as sympathetic relays. Thus, the pelvic viscera receive no innervation from parasympathetic or typical sympathetic neurons, but instead from a divergent tail end of the sympathetic chains, in charge of its idiosyncratic functions.


Asunto(s)
Neuronas , Vísceras , Ratones , Animales , Neuronas/fisiología , Sistema Nervioso Autónomo , Sistema Nervioso Simpático/metabolismo , Pelvis
9.
Br J Radiol ; 97(1156): 734-743, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38327010

RESUMEN

OBJECTIVES: The neurotrophic tyrosine receptor kinase (NTRK) fusion transcript (FT) is a major genetic landmark of infantile fibrosarcoma (IFS) and cellular congenital mesoblastic nephroma (cCMN) but is also described in other tumours. The recent availability of NTRK-targeted drugs enhances the need for better identification. We aimed to describe the anatomic locations and imaging features of tumours with NTRK-FT in children. CASE SERIES: Imaging characteristics of NTRK-FT tumours of 41 children (median age: 4 months; 63% <1 year old; range: 0-188) managed between 2001 and 2019 were retrospectively analysed. The tumours were located in the soft tissues (n = 24, including 19 IFS), kidneys (n = 9, including 8 cCMN), central nervous system (CNS) (n = 5), lung (n = 2), and bone (n = 1). The tumours were frequently deep-located (93%) and heterogeneous (71%) with necrotic (53%) or haemorrhagic components (29%). Although inconstant, enlarged intratumoural vessels were a recurrent finding (70%) with an irregular distribution (63%) in the most frequent anatomical locations. CONCLUSION: Paediatric NTRK-FT tumours mainly occur in infants with very variable histotypes and locations. Rich and irregular intra-tumoural vascularization are recurrent findings. ADVANCES IN KNOWLEDGE: Apart from IFS of soft tissues and cCMN of the kidneys, others NTRK-FT tumours locations have to be known, as CNS tumours. Better knowledge of the imaging characteristics may help guide the pathological and biological identification.


Asunto(s)
Fibrosarcoma , Neoplasias Renales , Nefroma Mesoblástico , Receptores de Aminoácidos , Lactante , Niño , Humanos , Estudios Retrospectivos , Nefroma Mesoblástico/congénito , Nefroma Mesoblástico/genética , Nefroma Mesoblástico/patología , Fibrosarcoma/genética , Fibrosarcoma/patología , Neoplasias Renales/diagnóstico por imagen , Neoplasias Renales/genética
10.
Nat Commun ; 14(1): 8361, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38102136

RESUMEN

Activation of oncogenic gene expression from long-range enhancers is initiated by the assembly of DNA-binding transcription factors (TF), leading to recruitment of co-activators such as CBP/p300 to modify the local genomic context and facilitate RNA-Polymerase 2 (Pol2) binding. Yet, most TF-to-coactivator recruitment relationships remain unmapped. Here, studying the oncogenic fusion TF PAX3-FOXO1 (P3F) from alveolar rhabdomyosarcoma (aRMS), we show that a single cysteine in the activation domain (AD) of P3F is important for a small alpha helical coil that recruits CBP/p300 to chromatin. P3F driven transcription requires both this single cysteine and CBP/p300. Mutants of the cysteine reduce aRMS cell proliferation and induce cellular differentiation. Furthermore, we discover a profound dependence on CBP/p300 for clustering of Pol2 loops that connect P3F to its target genes. In the absence of CBP/p300, Pol2 long range enhancer loops collapse, Pol2 accumulates in CpG islands and fails to exit the gene body. These results reveal a potential novel axis for therapeutic interference with P3F in aRMS and clarify the molecular relationship of P3F and CBP/p300 in sustaining active Pol2 clusters essential for oncogenic transcription.


Asunto(s)
ARN Polimerasa II , Rabdomiosarcoma Alveolar , Humanos , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Cisteína/metabolismo , Factores de Transcripción/metabolismo , Factor de Transcripción PAX3/genética , Rabdomiosarcoma Alveolar/genética , ARN/metabolismo , Activación Transcripcional , Unión Proteica , Proteína Forkhead Box O1/metabolismo
11.
Cell Rep Med ; 4(12): 101339, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38118405

RESUMEN

Rhabdomyosarcoma (RMS) is the main form of pediatric soft-tissue sarcoma. Its cure rate has not notably improved in the last 20 years following relapse, and the lack of reliable preclinical models has hampered the design of new therapies. This is particularly true for highly heterogeneous fusion-negative RMS (FNRMS). Although methods have been proposed to establish FNRMS organoids, their efficiency remains limited to date, both in terms of derivation rate and ability to accurately mimic the original tumor. Here, we present the development of a next-generation 3D organoid model derived from relapsed adult and pediatric FNRMS. This model preserves the molecular features of the patients' tumors and is expandable for several months in 3D, reinforcing its interest to drug combination screening with longitudinal efficacy monitoring. As a proof-of-concept, we demonstrate its preclinical relevance by reevaluating the therapeutic opportunities of targeting apoptosis in FNRMS from a streamlined approach based on transcriptomic data exploitation.


Asunto(s)
Antineoplásicos , Rabdomiosarcoma , Adulto , Humanos , Niño , Recurrencia Local de Neoplasia/tratamiento farmacológico , Rabdomiosarcoma/tratamiento farmacológico , Rabdomiosarcoma/patología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Organoides/patología , Muerte Celular
12.
Lab Chip ; 23(24): 5139-5150, 2023 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-37942508

RESUMEN

3D in vitro biological systems are progressively replacing 2D systems to increase the physiological relevance of cellular studies. Microfluidics-based approaches can be powerful tools towards such biomimetic systems, but often require high-end complicated and expensive processes and equipment for microfabrication. Herein, a drug screening platform is proposed, minimizing technicality and manufacturing steps. It provides an alternate way of spheroid generation in droplets in tubes. Droplet microfluidics then elicit multiple droplets merging events at programmable times, to submit sequentially the spheroids to chemotherapy and to reagents for cytotoxicity screening. After a comprehensive study of tumorogenesis within the droplets, the system is validated for drug screening (IC50) with chemotherapies in cancer cell lines as well as cells from a patient-derived-xenografts (PDX). As compared to microtiter plates methods, our system reduces the initial number of cells up to 10 times and opens new avenues towards primary tumors drug screening approaches.


Asunto(s)
Microfluídica , Neoplasias , Humanos , Microfluídica/métodos , Evaluación Preclínica de Medicamentos , Detección Precoz del Cáncer , Esferoides Celulares , Línea Celular Tumoral , Neoplasias/tratamiento farmacológico
13.
Nat Commun ; 14(1): 6669, 2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37863903

RESUMEN

Atypical teratoid rhabdoid tumors (ATRT) are divided into MYC, TYR and SHH subgroups, suggesting diverse lineages of origin. Here, we investigate the imaging of human ATRT at diagnosis and the precise anatomic origin of brain tumors in the Rosa26-CreERT2::Smarcb1flox/flox model. This cross-species analysis points to an extra-cerebral origin for MYC tumors. Additionally, we clearly distinguish SHH ATRT emerging from the cerebellar anterior lobe (CAL) from those emerging from the basal ganglia (BG) and intra-ventricular (IV) regions. Molecular characteristics point to the midbrain-hindbrain boundary as the origin of CAL SHH ATRT, and to the ganglionic eminence as the origin of BG/IV SHH ATRT. Single-cell RNA sequencing on SHH ATRT supports these hypotheses. Trajectory analyses suggest that SMARCB1 loss induces a de-differentiation process mediated by repressors of the neuronal program such as REST, ID and the NOTCH pathway.


Asunto(s)
Neoplasias Encefálicas , Tumor Rabdoide , Teratoma , Humanos , Tumor Rabdoide/genética , Multiómica , Proteína SMARCB1/genética , Factores de Transcripción/genética , Neoplasias Encefálicas/genética , Diagnóstico por Imagen , Teratoma/patología , Proteínas Hedgehog/genética
14.
NPJ Precis Oncol ; 7(1): 96, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37730754

RESUMEN

The genomic spectrum of rhabdomyosarcoma (RMS) progression from primary to relapse is not fully understood. In this pilot study, we explore the sensitivity of various targeted and whole-genome NGS platforms in order to assess the best genomic approach of using liquid biopsy in future prospective clinical trials. Moreover, we investigate 35 paired primary/relapsed RMS from two contributing institutions, 18 fusion-positive (FP-RMS) and 17 fusion-negative RMS (FN-RMS) by either targeted DNA or whole exome sequencing (WES). In 10 cases, circulating tumor DNA (ctDNA) from multiple timepoints through clinical care and progression was analyzed for feasibility of liquid biopsy in monitoring treatment response/relapse. ctDNA alterations were evaluated using a targeted 36-gene custom RMS panel at high coverage for single-nucleotide variation and fusion detection, and a shallow whole-genome sequencing for copy number variation. FP-RMS have a stable genome with relapse, with common secondary alterations CDKN2A/B, MYCN, and CDK4 present at diagnosis and impacting survival. FP-RMS lacking major secondary events at baseline acquire recurrent MYCN and AKT1 alterations. FN-RMS acquire a higher number of new alterations, most commonly SMARCA2 missense mutations. ctDNA analyses detect pathognomonic variants in all RMS patients within our collection at diagnosis, regardless of type of alterations, and confirmed at relapse in 86% of FP-RMS and 100% FN-RMS. Moreover, a higher number of fusion reads is detected with increased disease burden and at relapse in patients following a fatal outcome. These results underscore patterns of tumor progression and provide rationale for using liquid biopsy to monitor treatment response.

15.
Commun Biol ; 6(1): 949, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37723198

RESUMEN

Pediatric patients with recurrent and refractory cancers are in most need for new treatments. This study developed patient-derived-xenograft (PDX) models within the European MAPPYACTS cancer precision medicine trial (NCT02613962). To date, 131 PDX models were established following heterotopical and/or orthotopical implantation in immunocompromised mice: 76 sarcomas, 25 other solid tumors, 12 central nervous system tumors, 15 acute leukemias, and 3 lymphomas. PDX establishment rate was 43%. Histology, whole exome and RNA sequencing revealed a high concordance with the primary patient's tumor profile, human leukocyte-antigen characteristics and specific metabolic pathway signatures. A detailed patient molecular characterization, including specific mutations prioritized in the clinical molecular tumor boards are provided. Ninety models were shared with the IMI2 ITCC Pediatric Preclinical Proof-of-concept Platform (IMI2 ITCC-P4) for further exploitation. This PDX biobank of unique recurrent childhood cancers provides an essential support for basic and translational research and treatments development in advanced pediatric malignancies.


Asunto(s)
Leucemia , Neoplasias , Animales , Niño , Humanos , Ratones , Bancos de Muestras Biológicas , Modelos Animales de Enfermedad , Xenoinjertos , Neoplasias/genética , Medicina de Precisión , Ensayos Clínicos como Asunto
17.
Expert Rev Anticancer Ther ; 23(8): 865-874, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37434345

RESUMEN

BACKGROUND: NTRK gene fusions have been identified in various tumors; some requiring aggressive therapy and sometimes new TRK inhibitors (TRKi). We aimed to describe a national, unselected, retrospective, multicenter cohort. RESEARCH DESIGN AND METHODS: Patients were identified through the French sarcoma diagnostic laboratory at Institut Curie through samples analyzed by RT-qPCR or whole-transcriptome sequencing. RESULTS: From 2001 to 2019, 65 NTRK fusion tumors were identified within 2120 analyses (3.1%): 58 by RNA sequencing (including 20 after RT-qPCR analysis) and 7 exclusively by RT-qPCR. Of the 61 patients identified, 37 patients had infantile soft tissue or kidney fibrosarcomas (IFS), 15 other mesenchymal (Other-MT) and nine central nervous system (CNS) tumors. They encompassed 14 different tumor types with variable behaviors. Overall, 53 patients had surgery (3 mutilating), 38 chemotherapy (20 alkylating agents/anthracycline), 11 radiotherapy, two 'observation strategy' and 13 received TRKi. After a median follow-up of 61.0 months [range, 2.5-226.0], 10 patients died. Five-year overall survival is, respectively, 91.9% [95%CI, 83.5-100.0], 61.1% [95%CI, 34.2-100.0] and 64.8% [95%CI, 39.3-100.0] for IFS, Other-MT, and CNS groups. CONCLUSIONS: NTRK-fusion positive tumors are rare but detection is improved through RNA sequencing. TRKi could be considered at diagnosis for CNS NTRK-fusion positive tumors, some IFS, and Other-MT. TRIAL REGISTRATION: Not adapted.


Asunto(s)
Neoplasias del Sistema Nervioso Central , Fibrosarcoma , Neoplasias , Sarcoma , Humanos , Receptor trkA/genética , Receptor trkA/uso terapéutico , Tropomiosina/uso terapéutico , Estudios Retrospectivos , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Sarcoma/patología , Fibrosarcoma/tratamiento farmacológico , Fibrosarcoma/genética , Fibrosarcoma/patología , Proteínas de Fusión Oncogénica/genética
18.
NAR Genom Bioinform ; 5(3): lqad069, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37448589

RESUMEN

Data integration of single-cell RNA-seq (scRNA-seq) data describes the task of embedding datasets gathered from different sources or experiments into a common representation so that cells with similar types or states are embedded close to one another independently from their dataset of origin. Data integration is a crucial step in most scRNA-seq data analysis pipelines involving multiple batches. It improves data visualization, batch effect reduction, clustering, label transfer, and cell type inference. Many data integration tools have been proposed during the last decade, but a surge in the number of these methods has made it difficult to pick one for a given use case. Furthermore, these tools are provided as rigid pieces of software, making it hard to adapt them to various specific scenarios. In order to address both of these issues at once, we introduce the transmorph framework. It allows the user to engineer powerful data integration pipelines and is supported by a rich software ecosystem. We demonstrate transmorph usefulness by solving a variety of practical challenges on scRNA-seq datasets including joint datasets embedding, gene space integration, and transfer of cycle phase annotations. transmorph is provided as an open source python package.

19.
Cancers (Basel) ; 15(13)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37444642

RESUMEN

BACKGROUND: Liquid biopsies are revolutionary tools used to detect tumor-specific genetic alterations in body fluids, including the use of cell-free DNA (cfDNA) for molecular diagnosis in cancer patients. In brain tumors, cerebrospinal fluid (CSF) cfDNA might be more informative than plasma cfDNA. Here, we assess the use of CSF cfDNA in pediatric embryonal brain tumors (EBT) for molecular diagnosis. METHODS: The CSF cfDNA of pediatric patients with medulloblastoma (n = 18), ATRT (n = 3), ETMR (n = 1), CNS NB FOXR2 (n = 2) and pediatric EBT NOS (n = 1) (mean cfDNA concentration 48 ng/mL; range 4-442 ng/mL) and matched tumor genomic DNA were sequenced by WES and/or a targeted sequencing approach to determine single-nucleotide variations (SNVs) and copy number alterations (CNA). A specific capture covering transcription start sites (TSS) of genes of interest was also used for nucleosome footprinting in CSF cfDNA. RESULTS: 15/25 CSF cfDNA samples yielded informative results, with informative CNA and SNVs in 11 and 15 cases, respectively. For cases with paired tumor and CSF cfDNA WES (n = 15), a mean of 83 (range 1-160) shared SNVs were observed, including SNVs in classical medulloblastoma genes such as SMO and KMT2D. Interestingly, tumor-specific SNVs (mean 18; range 1-62) or CSF-specific SNVs (mean 5; range 0-25) were also observed, suggesting clonal heterogeneity. The TSS panel resulted in differential coverage profiles across all 112 studied genes in 7 cases, indicating distinct promoter accessibility. CONCLUSION: CSF cfDNA sequencing yielded informative results in 60% (15/25) of all cases, with informative results in 83% (15/18) of all cases analyzed by WES. These results pave the way for the implementation of these novel approaches for molecular diagnosis and minimal residual disease monitoring.

20.
Cancer Epidemiol ; : 102398, 2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37357067

RESUMEN

BACKGROUND: Adolescents (15-19 years) with sarcoma are known to have significantly worse survival than children (0-14 years). One possible reason may be that the adolescent sarcomas exhibit specific biological characteristics resulting in differences in clinical presentation and treatment resistance behaviors. The BIOSCA project aims to further explore these age-related differences in survival accounting for molecular tumor characteristic in children and adolescents with sarcoma. METHODS: A retrospective national population-based observational study with documented somatic genetic analyses was conducted between 2011 and 2016 of all patients aged from 0 to 17 years with a diagnosis of sarcoma using the National Registry of Childhood Cancers Database. RESULTS: A total of 1637 children (0-9years: 40%), preadolescents (10-14years: 35%) and adolescents (15-17 years: 25%) with a diagnosis of bone (N = 845) or soft-tissue (N = 792) sarcoma were included. Adolescents had significantly worse outcome for undifferentiated small round cell sarcoma (USRCS), alveolar rhabdomyosarcoma (ARMS), and epithelioid sarcoma. Five-year overall survivals were worse among CIC-rearranged USRCS cases (47% [95%CI:21-69]) as compared to other USRCS, and PAX3::FOXO1 ARMS patients (44% [95%CI:32-55]) as compared to other ARMS. Adjusting for stage and genomic-profiling status, adolescents with USRCS were 1.6-fold more likely to die than children (P = 0.05), while the difference in survival between age of ARMS patients was weaken. Indeed, the prevalence of PAX3::FOXO1 increased significantly with age. CONCLUSION: Age was an independent prognostic factor of outcome only in patients with USRCS, while the association between age and survival of patients with ARMS could be partly explained by differences in prevalence of PAX3::FOXO1.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...