Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Rev Genet ; 25(2): 104-122, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37714958

RESUMEN

The ability of chemical modifications of single nucleotides to alter the electrostatic charge, hydrophobic surface and base pairing of RNA molecules is exploited for the clinical use of stable artificial RNAs such as mRNA vaccines and synthetic small RNA molecules - to increase or decrease the expression of therapeutic proteins. Furthermore, naturally occurring biochemical modifications of nucleotides regulate RNA metabolism and function to modulate crucial cellular processes. Studies showing the mechanisms by which RNA modifications regulate basic cell functions in higher organisms have led to greater understanding of how aberrant RNA modification profiles can cause disease in humans. Together, these basic science discoveries have unravelled the molecular and cellular functions of RNA modifications, have provided new prospects for therapeutic manipulation and have led to a range of innovative clinical approaches.


Asunto(s)
Nucleótidos , ARN , Humanos , ARN/metabolismo , Procesamiento Postranscripcional del ARN
2.
Nat Cell Biol ; 24(8): 1188-1189, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35927452
3.
Nature ; 607(7919): 593-603, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35768510

RESUMEN

Aggressive and metastatic cancers show enhanced metabolic plasticity1, but the precise underlying mechanisms of this remain unclear. Here we show how two NOP2/Sun RNA methyltransferase 3 (NSUN3)-dependent RNA modifications-5-methylcytosine (m5C) and its derivative 5-formylcytosine (f5C) (refs.2-4)-drive the translation of mitochondrial mRNA to power metastasis. Translation of mitochondrially encoded subunits of the oxidative phosphorylation complex depends on the formation of m5C at position 34 in mitochondrial tRNAMet. m5C-deficient human oral cancer cells exhibit increased levels of glycolysis and changes in their mitochondrial function that do not affect cell viability or primary tumour growth in vivo; however, metabolic plasticity is severely impaired as mitochondrial m5C-deficient tumours do not metastasize efficiently. We discovered that CD36-dependent non-dividing, metastasis-initiating tumour cells require mitochondrial m5C to activate invasion and dissemination. Moreover, a mitochondria-driven gene signature in patients with head and neck cancer is predictive for metastasis and disease progression. Finally, we confirm that this metabolic switch that allows the metastasis of tumour cells can be pharmacologically targeted through the inhibition of mitochondrial mRNA translation in vivo. Together, our results reveal that site-specific mitochondrial RNA modifications could be therapeutic targets to combat metastasis.


Asunto(s)
5-Metilcitosina , Citosina/análogos & derivados , Glucólisis , Mitocondrias , Metástasis de la Neoplasia , Fosforilación Oxidativa , ARN Mitocondrial , 5-Metilcitosina/biosíntesis , 5-Metilcitosina/metabolismo , Antígenos CD36 , Supervivencia Celular , Citosina/metabolismo , Progresión de la Enfermedad , Glucólisis/efectos de los fármacos , Humanos , Metilación/efectos de los fármacos , Metiltransferasas/antagonistas & inhibidores , Metiltransferasas/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Mitocondrias/metabolismo , Neoplasias de la Boca/genética , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/patología , Metástasis de la Neoplasia/tratamiento farmacológico , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/patología , Fosforilación Oxidativa/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , ARN Mitocondrial/genética , ARN Mitocondrial/metabolismo , ARN de Transferencia de Metionina/genética , ARN de Transferencia de Metionina/metabolismo
5.
Nat Cell Biol ; 21(5): 552-559, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31048770

RESUMEN

The deposition of chemical modifications into RNA is a crucial regulator of temporal and spatial gene expression programs during development. Accordingly, altered RNA modification patterns are widely linked to developmental diseases. Recently, the dysregulation of RNA modification pathways also emerged as a contributor to cancer. By modulating cell survival, differentiation, migration and drug resistance, RNA modifications add another regulatory layer of complexity to most aspects of tumourigenesis.


Asunto(s)
Diferenciación Celular/genética , Neoplasias/genética , Procesamiento Postranscripcional del ARN/genética , ARN/genética , Linaje de la Célula/genética , Movimiento Celular/genética , Proliferación Celular/genética , Supervivencia Celular/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias/patología , ARN/metabolismo
6.
Nature ; 558(7711): 605-609, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29925953

RESUMEN

Reprogramming of mRNA translation has a key role in cancer development and drug resistance 1 . However, the molecular mechanisms that are involved in this process remain poorly understood. Wobble tRNA modifications are required for specific codon decoding during translation2,3. Here we show, in humans, that the enzymes that catalyse modifications of wobble uridine 34 (U34) tRNA (U34 enzymes) are key players of the protein synthesis rewiring that is induced by the transformation driven by the BRAF V600E oncogene and by resistance to targeted therapy in melanoma. We show that BRAF V600E -expressing melanoma cells are dependent on U34 enzymes for survival, and that concurrent inhibition of MAPK signalling and ELP3 or CTU1 and/or CTU2 synergizes to kill melanoma cells. Activation of the PI3K signalling pathway, one of the most common mechanisms of acquired resistance to MAPK therapeutic agents, markedly increases the expression of U34 enzymes. Mechanistically, U34 enzymes promote glycolysis in melanoma cells through the direct, codon-dependent, regulation of the translation of HIF1A mRNA and the maintenance of high levels of HIF1α protein. Therefore, the acquired resistance to anti-BRAF therapy is associated with high levels of U34 enzymes and HIF1α. Together, these results demonstrate that U34 enzymes promote the survival and resistance to therapy of melanoma cells by regulating specific mRNA translation.


Asunto(s)
Codón/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Melanoma/tratamiento farmacológico , Melanoma/genética , Biosíntesis de Proteínas , Animales , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Codón/efectos de los fármacos , Femenino , Humanos , Masculino , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Melanoma/patología , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/genética , Melanoma Experimental/patología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Fosforilación , Biosíntesis de Proteínas/efectos de los fármacos , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas B-raf/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Transferencia/química , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Transducción de Señal , Factores de Elongación Transcripcional , Uridina/química , Uridina/genética , Uridina/metabolismo , Vemurafenib/farmacología , Vemurafenib/uso terapéutico , Pez Cebra/genética
7.
Cancer Res ; 78(16): 4533-4548, 2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29915160

RESUMEN

MAPK signaling pathways are constitutively active in colon cancer and also promote acquired resistance to MEK1 inhibition. Here, we demonstrate that BRAFV600E -mutated colorectal cancers acquire resistance to MEK1 inhibition by inducing expression of the scaffold protein CEMIP through a ß-catenin- and FRA-1-dependent pathway. CEMIP was found in endosomes and bound MEK1 to sustain ERK1/2 activation in MEK1 inhibitor-resistant BRAFV600E-mutated colorectal cancers. The CEMIP-dependent pathway maintained c-Myc protein levels through ERK1/2 and provided metabolic advantage in resistant cells, potentially by sustaining amino acids synthesis. CEMIP silencing circumvented resistance to MEK1 inhibition, partly, through a decrease of both ERK1/2 signaling and c-Myc. Together, our data identify a cross-talk between Wnt and MAPK signaling cascades, which involves CEMIP. Activation of this pathway promotes survival by potentially regulating levels of specific amino acids via a Myc-associated cascade. Targeting this node may provide a promising avenue for treatment of colon cancers that have acquired resistance to targeted therapies.Significance: MEK1 inhibitor-resistant colorectal cancer relies on the scaffold and endosomal protein CEMIP to maintain ERK1/2 signaling and Myc-driven transcription. Cancer Res; 78(16); 4533-48. ©2018 AACR.


Asunto(s)
Neoplasias Colorrectales/tratamiento farmacológico , MAP Quinasa Quinasa 1/genética , Proteínas/genética , Proteínas Proto-Oncogénicas B-raf/genética , Aminoácidos/genética , Bencimidazoles/farmacología , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Resistencia a Antineoplásicos/genética , Endosomas/metabolismo , Endosomas/patología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Hialuronoglucosaminidasa , MAP Quinasa Quinasa 1/antagonistas & inhibidores , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/genética , Organoides/metabolismo , Organoides/patología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-myc/genética , Vía de Señalización Wnt/genética
8.
Trends Cancer ; 3(4): 249-252, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28718436

RESUMEN

Translational control of protein synthesis supports tumor development and progression to metastasis. Wobble tRNA modifications are required during translation elongation and sustain proteome homeostasis. Recent work has highlighted the surprising upregulation of the wobble uridine 34 (U34) tRNA cascade in cancer, which underlies the specific requirement for this pathway in tumor development.


Asunto(s)
Neoplasias/genética , Biosíntesis de Proteínas/genética , ARN de Transferencia/genética , Humanos
10.
J Exp Med ; 213(11): 2503-2523, 2016 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-27811057

RESUMEN

Quantitative and qualitative changes in mRNA translation occur in tumor cells and support cancer progression and metastasis. Posttranscriptional modifications of transfer RNAs (tRNAs) at the wobble uridine 34 (U34) base are highly conserved and contribute to translation fidelity. Here, we show that ELP3 and CTU1/2, partner enzymes in U34 mcm5s2-tRNA modification, are up-regulated in human breast cancers and sustain metastasis. Elp3 genetic ablation strongly impaired invasion and metastasis formation in the PyMT model of invasive breast cancer. Mechanistically, ELP3 and CTU1/2 support cellular invasion through the translation of the oncoprotein DEK. As a result, DEK promotes the IRES-dependent translation of the proinvasive transcription factor LEF1. Consistently, a DEK mutant, whose codon composition is independent of U34 mcm5s2-tRNA modification, escapes the ELP3- and CTU1-dependent regulation and restores the IRES-dependent LEF1 expression. Our results demonstrate that the key role of U34 tRNA modification is to support specific translation during breast cancer progression and highlight a functional link between tRNA modification- and IRES-dependent translation during tumor cell invasion and metastasis.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Histona Acetiltransferasas/metabolismo , Sitios Internos de Entrada al Ribosoma/genética , Factor de Unión 1 al Potenciador Linfoide/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Biosíntesis de Proteínas , ARN de Transferencia/metabolismo , Animales , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/genética , Movimiento Celular/genética , Proteínas Cromosómicas no Histona/metabolismo , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Células MCF-7 , Ratones , Modelos Biológicos , Invasividad Neoplásica , Metástasis de la Neoplasia , Proteínas Oncogénicas/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa , Tiouridina/análogos & derivados , Tiouridina/metabolismo , Regulación hacia Arriba/genética
11.
J Exp Med ; 212(12): 2057-75, 2015 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-26527802

RESUMEN

Tumor initiation in the intestine can rapidly occur from Lgr5(+) crypt columnar stem cells. Dclk1 is a marker of differentiated Tuft cells and, when coexpressed with Lgr5, also marks intestinal cancer stem cells. Here, we show that Elp3, the catalytic subunit of the Elongator complex, is required for Wnt-driven intestinal tumor initiation and radiation-induced regeneration by maintaining a subpool of Lgr5(+)/Dclk1(+)/Sox9(+) cells. Elp3 deficiency dramatically delayed tumor appearance in Apc-mutated intestinal epithelia and greatly prolonged mice survival without affecting the normal epithelium. Specific ablation of Elp3 in Lgr5(+) cells resulted in marked reduction of polyp formation upon Apc inactivation, in part due to a decreased number of Lgr5(+)/Dclk1(+)/Sox9(+) cells. Mechanistically, Elp3 is induced by Wnt signaling and promotes Sox9 translation, which is needed to maintain the subpool of Lgr5(+)/Dclk1(+) cancer stem cells. Consequently, Elp3 or Sox9 depletion led to similar defects in Dclk1(+) cancer stem cells in ex vivo organoids. Finally, Elp3 deficiency strongly impaired radiation-induced intestinal regeneration, in part because of decreased Sox9 protein levels. Together, our data demonstrate the crucial role of Elp3 in maintaining a subpopulation of Lgr5-derived and Sox9-expressing cells needed to trigger Wnt-driven tumor initiation in the intestine.


Asunto(s)
Histona Acetiltransferasas/metabolismo , Intestinos/fisiopatología , Neoplasias/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Regeneración/fisiología , Proteínas Wnt/metabolismo , Proteína de la Poliposis Adenomatosa del Colon/genética , Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Animales , Western Blotting , Línea Celular Tumoral , Quinasas Similares a Doblecortina , Expresión Génica/efectos de la radiación , Células HCT116 , Células HEK293 , Células HT29 , Histona Acetiltransferasas/genética , Humanos , Mucosa Intestinal/metabolismo , Intestinos/efectos de la radiación , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Microscopía Confocal , Neoplasias/genética , Neoplasias/patología , Proteínas del Tejido Nervioso/genética , Técnicas de Cultivo de Órganos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Regeneración/genética , Regeneración/efectos de la radiación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Proteínas Wnt/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA