Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Eur Respir J ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-38936968

RESUMEN

INTRODUCTION: Chronic thromboembolic pulmonary hypertension (CTEPH) is often diagnosed late in acute pulmonary embolism (PE) survivors: more efficient testing to expedite diagnosis may considerably improve patient outcomes. The InShape II algorithm safely rules out CTEPH (failure rate 0.29%) while requiring echocardiography in only 19% of patients but may be improved by adding detailed reading of the computed tomography pulmonary angiography (CTPA) diagnosing the index PE. METHODS: Twelve new algorithms, incorporating the CTEPH prediction score, ECG reading, NT-proBNP levels and dedicated CTPA reading were evaluated in the international InShape II (n=341) and part of the German FOCUS cohort (n=171). Evaluation criteria included failure rate, defined as the incidence of confirmed CTEPH in PE patients in whom echocardiography was deemed unnecessary by the algorithm, and the overall net reclassification index (NRI) compared to the InShape II algorithm. RESULTS: The algorithm starting with CTPA reading of the index PE for 6 signs of CTEPH, followed by the ECG/NTproBNP assessment and echocardiography resulted in the most beneficial change compared to InShape II with a need for echocardiography in 20% (+5%), a failure rate of 0%, and an NRI of +3.5, reflecting improved performance over the InShape II algorithm. In the FOCUS cohort, this approach lowered echocardiography need to 24% (-6%) and missed no CTEPH cases, with an NRI of +6.0. CONCLUSION: Dedicated CTPA reading of the index PE improved the performance of the InShape II algorithm and may improve the selection of PE survivors who require echocardiography to rule out CTEPH.

2.
Am J Respir Crit Care Med ; 209(12): 1477-1485, 2024 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-38470220

RESUMEN

Rationale: Chronic thromboembolic pulmonary hypertension involves the formation and nonresolution of thrombus, dysregulated inflammation, angiogenesis, and the development of a small-vessel vasculopathy. Objectives: We aimed to establish the genetic basis of chronic thromboembolic pulmonary hypertension to gain insight into its pathophysiological contributors. Methods: We conducted a genome-wide association study on 1,907 European cases and 10,363 European control subjects. We coanalyzed our results with existing results from genome-wide association studies on deep vein thrombosis, pulmonary embolism, and idiopathic pulmonary arterial hypertension. Measurements and Main Results: Our primary association study revealed genetic associations at the ABO, FGG, F11, MYH7B, and HLA-DRA loci. Through our coanalysis, we demonstrate further associations with chronic thromboembolic pulmonary hypertension at the F2, TSPAN15, SLC44A2, and F5 loci but find no statistically significant associations shared with idiopathic pulmonary arterial hypertension. Conclusions: Chronic thromboembolic pulmonary hypertension is a partially heritable polygenic disease, with related though distinct genetic associations with pulmonary embolism and deep vein thrombosis.


Asunto(s)
Estudio de Asociación del Genoma Completo , Hipertensión Pulmonar , Embolia Pulmonar , Humanos , Embolia Pulmonar/genética , Embolia Pulmonar/complicaciones , Hipertensión Pulmonar/genética , Masculino , Femenino , Persona de Mediana Edad , Enfermedad Crónica , Genómica , Predisposición Genética a la Enfermedad , Adulto , Estudios de Casos y Controles , Anciano , Trombosis de la Vena/genética
3.
Arterioscler Thromb Vasc Biol ; 44(4): 794-806, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38328933

RESUMEN

Chronic thromboembolic pulmonary hypertension (CTEPH) is a rare form of pulmonary hypertension characterized by the presence of organized thrombi that obstruct pulmonary arteries, ultimately leading to right heart failure and death. Among others, impaired angiogenesis and inflammatory thrombosis have been shown to contribute to the progression of CTEPH. In this review, we summarize the 2-faced nature of angiogenesis in both thrombus formation and resolution in the context of CTEPH and highlight the dual role of angiogenesis and neovascularization in resolving venous thrombi. Furthermore, we discuss relevant in vitro and in vivo models that support the benefits or drawbacks of angiogenesis in CTEPH progression. We discuss the key pathways involved in modulating angiogenesis, particularly the underexplored role of TGFß (transforming growth factor-beta) signaling in driving fibrosis as an integral element of CTEPH pathogenesis. We finally explore innovative treatment strategies that target angiogenic pathways. These strategies have the potential to pioneer preventive, inventive, or alternative therapeutic options for patients with CTEPH who may not qualify for surgical interventions. Moreover, they could be used synergistically with established treatments such as pulmonary endarterectomy or balloon pulmonary angioplasty. In summary, this review emphasizes the crucial role of angiogenesis in the development of in fibrothrombotic tissue, a major pathological characteristic of CTEPH.


Asunto(s)
Hipertensión Pulmonar , Embolia Pulmonar , Trombosis , Humanos , Hipertensión Pulmonar/etiología , Embolia Pulmonar/terapia , Angiogénesis , Arteria Pulmonar/patología , Trombosis/patología , Enfermedad Crónica , Endarterectomía/efectos adversos
4.
Eur Respir Rev ; 32(170)2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38123236

RESUMEN

Chronic thromboembolic pulmonary hypertension (CTEPH) is a rare and potentially life-threatening complication of acute pulmonary embolism. It is characterised by persistent fibro-thrombotic pulmonary vascular obstructions and elevated pulmonary artery pressure leading to right heart failure. The diagnosis is based on two steps, as follows: 1) suspicion based on symptoms, echocardiography and ventilation/perfusion scan and 2) confirmation with right heart catheterisation, computed tomography pulmonary angiography and, in most cases, digital subtraction angiography. The management of CTEPH requires a multimodal approach, involving medical therapy, interventional procedures and surgical intervention. This clinical-radiological-pathological correlation paper illustrates the diagnostic and therapeutic management of two patients. The first had chronic thromboembolic pulmonary disease without pulmonary hypertension at rest but with significant physical limitation and was successfully treated with pulmonary endarterectomy. The second patient had CTEPH associated with splenectomy and was considered unsuitable for surgery because of exclusive subsegmental lesions combined with severe pulmonary hypertension. The patient benefited from multimodal treatment involving medical therapy followed by multiple sessions of balloon pulmonary angioplasty. Both patients had normalised functional capacity and pulmonary haemodynamics 3-6 months after the interventional treatment. These two examples show that chronic thromboembolic pulmonary diseases are curable if diagnosed promptly and referred to CTEPH centres for specialist treatment.


Asunto(s)
Angioplastia de Balón , Hipertensión Pulmonar , Embolia Pulmonar , Humanos , Hipertensión Pulmonar/diagnóstico por imagen , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/terapia , Embolia Pulmonar/complicaciones , Embolia Pulmonar/diagnóstico por imagen , Embolia Pulmonar/terapia , Angioplastia de Balón/efectos adversos , Angiografía/efectos adversos , Tomografía Computarizada por Rayos X , Enfermedad Crónica , Endarterectomía/efectos adversos , Arteria Pulmonar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...