Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 12(20)2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37896019

RESUMEN

For the management of Spodoptera frugiperda, botanical extracts have been used to reduce the environmental impacts of synthetic chemical pesticides. In the present investigation, the insecticidal activity of the acetonic and methanolic extracts of Heterotheca inuloides (Asteraceae) and of the main compound 7-hydroxy-3,4-dihydrocadalene on this pest as well as its ecotoxicological effect on Poecilia reticulata were evaluated. A greater insecticidal response was obtained from the acetonic extracts than from the methanolic extracts, with LC50 values of 730.4 ppm and 711.7 ppm for samples 1 and 2, respectively. Similarly, there was a lethal effect on 50% of the P. reticulata population at low concentrations in the acetonic extract compared to the methanolic extract. The sesquiterpene 7-hydroxy-3,4-dihydrocadalene has greater insecticidal activity by presenting an LC50 of 44.36 ppm; however, it is classified as moderately toxic for guppy fish.

2.
PeerJ ; 11: e15586, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37361049

RESUMEN

Background: Heterotheca inuloides, traditionally employed in Mexico, has demonstrated anticancer activities. Although it has been proven that the cytotoxic effect is attributed to cadinane-type sesquiterpenes such as 7-hydroxy-3,4-dihydrocadalene, the mechanism of action by which these agents act in tumor lines and their regulation remain unknown. This study was undertaken to investigate for first time the cytotoxic activity and mechanism of action of 7-hydroxy-3,4-dihydrocadalene and two semi-synthetic cadinanes derivatives towards breast cancer cells. Methods: Cell viability and proliferation were assayed by thiazolyl blue tetrazolium bromide (MTT) assay and Trypan blue dye exclusion assay. Cell migration measure was tested by wound-healing assay. Moreover, the reactive oxygen species (ROS) and lipid peroxidation generation were measured by 2',7'-dichlorofluorescein diacetate (DCFH-DA) assay and thiobarbituric acid reactive substance (TBARS) assay, respectively. Furthermore, expression of caspase-3, Bcl-2 and GAPDH were analyzed by western blot. Results: The results showed that 7-hydroxy-3,4-dihydrocadalene inhibited MCF7 cell viability in a concentration and time dependent manner. The cytotoxic potency of semisynthetic derivatives 7-(phenylcarbamate)-3,4-dihydrocadalene and 7-(phenylcarbamate)-cadalene was remarkably lower. Moreover, in silico studies showed that 7-hydroxy-3,4-dihydrocadalene, and not so the semi-synthetic derivatives, has optimal physical-chemical properties to lead a promising cytotoxic agent. Further examination on the action mechanism of 7-hydroxy-3,4-dihydrocadalene suggested that this natural product exerted cytotoxicity via oxidative stress as evidenced in a significantly increase of intracellular ROS levels and in an induction of lipid peroxidation. Furthermore, the compound increased caspase-3 and caspase-9 activities and slightly inhibited Bcl-2 levels. Interestingly, it also reduced mitochondrial ATP synthesis and induced mitochondrial uncoupling. Conclusion: Taken together, 7-hydroxy-3,4-dihydrocadalene is a promising cytotoxic compound against breast cancer via oxidative stress-induction.


Asunto(s)
Antineoplásicos , Asteraceae , Neoplasias de la Mama , Humanos , Femenino , Asteraceae/química , Caspasa 3/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Antineoplásicos/farmacología , Estrés Oxidativo , Apoptosis , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
3.
Plant Pathol J ; 37(1): 24-35, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33551694

RESUMEN

Blue mold caused by Penicillium expansum is one of the most significant postharvest diseases of apples. Some microorganisms associated with the surface of ripening apples possess the ability to inhibit the growth of P. expansum. However, the existing literature about their colonization in the stages before ripening is not explored in depth. This study aims to characterize the antagonistic capacity of bacterial populations from five fruit development stages of 'Royal Gala' apples. The results have shown that the density of the bacterial populations decreases throughout the ripening stages of fruit (from 1.0 × 105 to 1.1 × 101 cfu/cm2). A total of 25 bacterial morphotypes (corresponding to five genera identified by 16S RNA) were differentiated in which Bacillus stood out as a predominant genus. In the in vitro antagonism tests, 10 Bacillus strains (40%) inhibited the mycelial growth of P. expansum from 30.1% to 60.1%, while in fruit bioassays, the same strains reduced the fruit rot ranging from 12% to 66%. Moreover, the bacterial strains with antagonistic activity increased in the ripening fruit stage. B. subtilis subsp. spiziennii M24 obtained the highest antagonistic activity (66.9% of rot reduction). The matrix-assisted laser desorption ionization- time of flight mass spectrometry analysis revealed that bacteria with antagonistic activity produce antifungal lipopeptides from iturin and fengycin families.

4.
PeerJ ; 9: e11796, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35070514

RESUMEN

Phytochemical diversity (PD) can be considered as a defensive trait; it can operate through single plant secondary metabolites or usually as complex mixtures of them. We tested the more diversity-better defense hypothesis correlating the leaf plant secondary metabolites (PSMs) with the incidence of plant enemies on Hass avocado trees. We expected a negative correlation between the occurrence of plant enemies and PD metrics. Also, as intraspecific PSMs polymorphisms in plant populations are common, we studied the incidence of plant enemies on Hass avocado trees representing chemical variants (chemotypes). We expected a differential incidence of plant enemies among trees grouped by their mono and sesquiterpene + phenylpropanoid chemotypes. We analyzed foliar hexane extracts from 236 trees in 17 orchards by gas chromatography and for the incidence of red mite, thrips, whitefly, avocado branch borer, fruit rot, scab, and peduncle collar blight. The predicted negative correlation between the plant enemies' incidence and the phytochemical metrics did not occur. To determine the relationship between enemy incidence and chemotypes we grouped the trees by cluster analysis using a matrix of PSMs in each tree. Most trees were grouped under four out of 23 chemotypes. Branch borers attacked trees of low-frequency chemotypes more frequently than trees with common chemotypes. The incidence of five plant enemies was different among the predominant chemotypes. The hypothesis of more diversity-better defense was not supported by the correlations between the phytochemical diversity and the incidence of pests and pathogens in Hass avocado orchards. Based on our results, we hypothesize that phytochemical diversity function as a defensive trait relies more on differentiation among individuals in a population than on the sole increase of chemical diversity. Also, the differential incidence of pests and pathogens on trees classified by their foliar chemotypes implies that these susceptibility or resistance markers represent potential useful tools for Hass avocado orchard pest management.

5.
Oxid Med Cell Longev ; 2019: 5287507, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31949879

RESUMEN

Kainic acid (KA) has been used to study the neurotoxicity induced after status epilepticus (SE) due to activation of excitatory amino acids with neuronal damage. Medicinal plants can protect against damage caused by KA-induced SE; in particular, organic extracts of Heterotheca inuloides and its metabolite quercetin display antioxidant activity and act as hepatoprotective agents. However, it is unknown whether these properties can protect against the hyperexcitability underlying the damage caused by KA-induced SE. Our aim was to study the protective effects (with regard to behavior and antioxidant activity) of administration of natural products methanolic (ME) and acetonic (AE) extracts and quercetin (Q) from H. inuloides at doses of 30 mg/kg (ME30, AE30, and Q30 groups), 100 mg/kg (ME100, AE100, and Q100 groups), and 300 mg/kg (ME300, AE300, and Q300 groups) against damage in brain regions of male Wistar rats treated with KA. We found dose-dependent effects on behavioral and biochemical studies in the all-natural product groups vs. the control group, with decreases in seizure severity (Racine's scale) and increases in seizure latency (p < 0.05 in the ME100, AE100, Q100, and Q300 groups and p < 0.01 in the AE300 and ME300 groups); on lipid peroxidation and carbonylated proteins in all brain tissues (p < 0.0001); and on GPx, GR, CAT, and SOD activities with all the treatments vs. KA (p ≤ 0.001). In addition, there were strong negative correlations between carbonyl levels and latency in the group treated with KA and in the group treated with methanolic extract in the presence of KA (r = -0.9919, p = 0.0084). This evidence suggests that organic extracts and quercetin from H. inuloides exert anticonvulsant effects via direct scavenging of reactive oxygen species (ROS) and modulation of antioxidant enzyme activity.


Asunto(s)
Antioxidantes/farmacología , Asteraceae/química , Conducta Animal/efectos de los fármacos , Ácido Kaínico/toxicidad , Extractos Vegetales/farmacología , Quercetina/farmacología , Estado Epiléptico/tratamiento farmacológico , Acetona/química , Animales , Combinación de Medicamentos , Agonistas de Aminoácidos Excitadores/toxicidad , Peroxidación de Lípido/efectos de los fármacos , Masculino , Metanol/química , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Estado Epiléptico/inducido químicamente , Estado Epiléptico/metabolismo , Estado Epiléptico/patología
6.
Oxid Med Cell Longev ; 2015: 843237, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25821555

RESUMEN

It has been suggested that the accumulation of biomolecular damage caused by reactive oxygen species (ROS) contributes to aging. The antioxidant activity is related to the ability of certain compounds to protect against the potentially harmful effect of processes or reactions involving ROS. This ability is associated with the termination of free radical propagation in biological systems. From Heterotheca inuloides various compounds which have shown to possess antioxidant capacity and scavenging ROS. The aim of this study was to determine the antioxidant capacity of additional natural components isolated from H. inuloides and some semisynthetic derivatives, their anti-inflammatory activity and the effect on Caenorhabditis elegans nematode life span. Compounds showed ability to inhibit various biological processes such as lipid peroxidation, scavenge nonbiological important oxidants such as (1)O2, OH(∙), H2O2, and HOCl and scavenge non biological stable free radicals (DPPH). Some cadinane type compounds showed possess antioxidant, ROS scavenging capacity, anti-inflammatory activity, and effect on the C. elegans life span. Flavonoid type compounds increased the life of the nematode and quercetin was identified as the compound with the greatest activity. The modification of chemical structure led to a change in the antioxidant capacity, the anti-inflammatory activity, and the survival of the worm.


Asunto(s)
Antiinflamatorios/farmacología , Antioxidantes/química , Asteraceae/química , Productos Biológicos/farmacología , Longevidad/efectos de los fármacos , Extractos Vegetales/química , Animales , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Antioxidantes/metabolismo , Asteraceae/metabolismo , Productos Biológicos/química , Productos Biológicos/aislamiento & purificación , Caenorhabditis elegans/fisiología , Depuradores de Radicales Libres/química , Peroxidación de Lípido/efectos de los fármacos , Especies Reactivas de Oxígeno/química , Especies Reactivas de Oxígeno/metabolismo , Superóxidos/química
7.
Oecologia ; 174(1): 195-203, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23942983

RESUMEN

Populations of the same species vary in their secondary metabolite content. This variation has been attributed to biotic and abiotic environmental conditions as well as to historical factors. Some studies have focused on the geographic variation of chemical diversity in plant populations, but whether this structure conforms to a central-marginal model or a mosaic pattern remains unclear. Furthermore, assessing the chemical diversity of invasive plants in their native distribution facilitates the understanding of their relationships with natural enemies. We examined the geographic variation of chemical diversity in Mexican populations of the bittervine weed Mikania micrantha and its relationship to herbivore damage. The foliar volatile terpenoid blend was analyzed in 165 individuals of 14 populations in the Pacific and Gulf of Mexico tropical watersheds. A cluster analysis grouped individuals with similar terpenoid blends into 56 compositional types. Chemical diversity was measured using the number of compounds and their concentration within the blends for individuals, and the number and frequency of compositional types for populations. A stepwise multiple regression analysis performed with geographic, climatic, and chemical diversity variables explained herbivore damage. However, population-level chemical diversity was the only variable found to be significant (ß = -0.79, P = 0.042) in the model (R(2) = 0.89). A Mantel test using Euclidean distances did not indicate any separation by geographic origin; however, four barriers were identified using Monmonier's algorithm. We conclude that variation in population-level chemical diversity follows a mosaic pattern in which geographic factors (i.e., natural barriers) have some effect and that variation is also associated with the local intensity of herbivore attack.


Asunto(s)
Herbivoria , Mikania/química , Animales , Geografía , México , Hojas de la Planta/química , Metabolismo Secundario , Terpenos/análisis
8.
Toxicology ; 276(1): 41-8, 2010 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-20620188

RESUMEN

Arnica (Heterotheca inuloides) is a widely used medicinal plant in México; it has been recognized as anti-inflammatory, analgesic, cytotoxic, scavenger of superoxide anion and also as a preventive of lipid peroxidation. In vivo studies have demonstrated a hepatoprotective action of the methanolic extract of this plant as well as of quercetin, one of its main components, and the evidence obtained pointed out to an antioxidant mechanism. In this work, we focused on the free radical scavenging capacity of acetonic and methanolic extracts of H. inuloides in comparison with reference compounds. The two extracts were 2-12 times more effective (IC50, microg/mL) than the reference compounds to cope with the following radicals or molecules tested: 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS(+)), 2,2-diphenyl-1-picrylhydrazyl (DPPH), peroxynitrite (ONOO(-)), superoxide (O2(-)), singlet oxygen ((1)O(2)), hypochlorous acid (HOCl), hydrogen peroxide (H2O2), hydroxyl (OH). Additionally, five secondary metabolites isolated from the methanolic extract displayed potent concentration-dependent antioxidant effects against reactive oxygen species produced in vitro (IC50 values in the range of 0.018-4.31mg/mL). d-Chiro-inositol showed the higher antioxidant effect against O2(-), H2O2 and OH while spinasterol and quercetin were the most active against (1)O(2) and ONOO(-), respectively. The antioxidant properties of the extracts and metabolites tested partially support the wide use of this plant in traditional medicine.


Asunto(s)
Antioxidantes/farmacología , Asteraceae/química , Extractos Vegetales/farmacología , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/administración & dosificación , Antioxidantes/aislamiento & purificación , Relación Dosis-Respuesta a Droga , Peróxido de Hidrógeno/metabolismo , Concentración 50 Inhibidora , Medicina Tradicional , México , Extractos Vegetales/administración & dosificación , Quercetina/administración & dosificación , Quercetina/aislamiento & purificación , Quercetina/farmacología , Estigmasterol/administración & dosificación , Estigmasterol/análogos & derivados , Estigmasterol/aislamiento & purificación , Estigmasterol/farmacología
9.
J Agric Food Chem ; 50(5): 1053-8, 2002 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-11853479

RESUMEN

Two novel phytotoxins, 8-zinniol methyl ether (5) and 8-zinniol acetate (6), in addition to 6-(3',3'-dimethylallyloxy)-4-methoxy-5-methylphthalide (2), 5-(3',3'-dimethylallyloxy)-7-methoxy-6-methylphthalide (3), and the novel metabolites 8-zinniol 2-(phenyl)ethyl ether (4) and 7-zinniol acetate (7) have been identified as natural zinniol derivatives from the organic crude extract of Alternaria tagetica culture filtrates. Using zinniol as the starting material, phytotoxin 5 was synthesized, together with a number of synthetic intermediates (8-13). Both natural and synthetic zinniol derivatives were evaluated in the leaf-spot bioassay against marigold leaves (Tagetes erecta).


Asunto(s)
Alternaria/química , Micotoxinas/aislamiento & purificación , Xilenos/aislamiento & purificación , Alternaria/metabolismo , Hidrólisis , Espectroscopía de Resonancia Magnética , Metilación , Conformación Molecular , Micotoxinas/síntesis química , Micotoxinas/química , Micotoxinas/metabolismo , Relación Estructura-Actividad , Xilenos/síntesis química , Xilenos/química , Xilenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...