Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 7(1): 1183, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39300231

RESUMEN

Autosomal Dominant Polycystic Kidney Disease (ADPKD) is the most prevalent kidney genetic disorder, producing structural abnormalities and impaired function. This research investigates its evolution on mouse models, utilizing a combination of histology imaging, Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) to evaluate its progression thoroughly. ADPKD has been induced in mice via PKD2 gene knockout, followed by image acquisition at different stages. Histology data provides two-dimensional details, like the cystic area ratio, whereas CT and MRI facilitate three-dimensional temporal monitoring. Our approach allows to quantify the affected tissue at different disease stages through multiple quantitative metrics. A pivotal point is shown at approximately ten weeks after induction, marked by a swift acceleration in disease advancement, and leading to a notable increase in cyst formation. This multimodal strategy augments our comprehension of ADPKD dynamics and suggests the possibility of employing higher-resolution imaging in the future for more accurate volumetric analyses.


Asunto(s)
Imagen por Resonancia Magnética , Riñón Poliquístico Autosómico Dominante , Tomografía Computarizada por Rayos X , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/diagnóstico por imagen , Riñón Poliquístico Autosómico Dominante/patología , Animales , Ratones , Ratones Noqueados , Modelos Animales de Enfermedad , Canales Catiónicos TRPP/genética , Progresión de la Enfermedad , Riñón/diagnóstico por imagen , Riñón/patología , Imagen Multimodal/métodos
2.
Sci Rep ; 14(1): 14241, 2024 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902496

RESUMEN

In recent years, there has been a surge in the development of methods for cell segmentation and tracking, with initiatives like the Cell Tracking Challenge driving progress in the field. Most studies focus on regular cell population videos in which cells are segmented and followed, and parental relationships annotated. However, DNA damage induced by genotoxic drugs or ionizing radiation produces additional abnormal events since it leads to behaviors like abnormal cell divisions (resulting in a number of daughters different from two) and cell death. With this in mind, we developed an automatic mitosis classifier to categorize small mitosis image sequences centered around one cell as "Normal" or "Abnormal." These mitosis sequences were extracted from videos of cell populations exposed to varying levels of radiation that affect the cell cycle's development. We explored several deep-learning architectures and found that a network with a ResNet50 backbone and including a Long Short-Term Memory (LSTM) layer produced the best results (mean F1-score: 0.93 ± 0.06). In the future, we plan to integrate this classifier with cell segmentation and tracking to build phylogenetic trees of the population after genomic stress.


Asunto(s)
División Celular , Aprendizaje Profundo , Mitosis , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Rastreo Celular/métodos
3.
Nat Methods ; 20(7): 1010-1020, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37202537

RESUMEN

The Cell Tracking Challenge is an ongoing benchmarking initiative that has become a reference in cell segmentation and tracking algorithm development. Here, we present a significant number of improvements introduced in the challenge since our 2017 report. These include the creation of a new segmentation-only benchmark, the enrichment of the dataset repository with new datasets that increase its diversity and complexity, and the creation of a silver standard reference corpus based on the most competitive results, which will be of particular interest for data-hungry deep learning-based strategies. Furthermore, we present the up-to-date cell segmentation and tracking leaderboards, an in-depth analysis of the relationship between the performance of the state-of-the-art methods and the properties of the datasets and annotations, and two novel, insightful studies about the generalizability and the reusability of top-performing methods. These studies provide critical practical conclusions for both developers and users of traditional and machine learning-based cell segmentation and tracking algorithms.


Asunto(s)
Benchmarking , Rastreo Celular , Rastreo Celular/métodos , Aprendizaje Automático , Algoritmos
4.
Prog Biophys Mol Biol ; 168: 37-51, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34293338

RESUMEN

Light Sheet Fluorescence Microscopy (LSFM) has revolutionized how optical imaging of biological specimens can be performed as this technique allows to produce 3D fluorescence images of entire samples with a high spatiotemporal resolution. In this manuscript, we aim to provide readers with an overview of the field of LSFM on ex vivo samples. Recent advances in LSFM architectures have made the technique widely accessible and have improved its acquisition speed and resolution, among other features. These developments are strongly supported by quantitative analysis of the huge image volumes produced thanks to the boost in computational capacities, the advent of Deep Learning techniques, and by the combination of LSFM with other imaging modalities. Namely, LSFM allows for the characterization of biological structures, disease manifestations and drug effectivity studies. This information can ultimately serve to develop novel diagnostic procedures, treatments and even to model the organs physiology in healthy and pathological conditions.


Asunto(s)
Imagenología Tridimensional , Imagen Óptica , Microscopía Fluorescente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...