Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Opt Express ; 32(4): 5932-5942, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38439308

RESUMEN

Anti-parity-time-symmetric Hamiltonians show an enhanced sensitivity to external perturbations that can be used for high-performance angular velocity sensing. Dissipative coupling is a valuable way for realizing anti-PT-symmetric Hamiltonians with optical resonators and is usually obtained by means of auxiliary waveguides. Here, we model and experimentally show the dissipative coupling between two counterpropagating modes of a single resonator, by means of a Bragg-grating placed in the feeding bus. The proposed solution enables the possibility of accurately designing the dissipative coupling strength in integrated non-Hermitian gyroscopes, thus providing high flexibility in the design of the proposed sensor. Moreover, we theoretically and experimentally demonstrate that the dissipative coupling between two counterpropagating modes of the same resonant cavity can give rise to an asymmetric Fano resonance.

2.
Biosensors (Basel) ; 13(7)2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37504086

RESUMEN

Label-free sensing is a promising approach for point-of-care testing devices. Among optical transducers, photonic crystal slabs (PCSs) have positioned themselves as an inexpensive yet versatile platform for label-free biosensing. A spectral resonance shift is observed upon biomolecular binding to the functionalized surface. Commonly, a PCS is read out by a spectrometer. Alternatively, the spectral shift may be translated into an intensity change by tailoring the system response. Intensity-based camera setups (IBCS) are of interest as they mitigate the need for postprocessing, enable spatial sampling, and have moderate hardware requirements. However, they exhibit modest performance compared with spectrometric approaches. Here, we show an increase of the sensitivity and limit of detection (LOD) of an IBCS by employing a sharp-edged cut-off filter to optimize the system response. We report an increase of the LOD from (7.1 ± 1.3) × 10-4 RIU to (3.2 ± 0.7) × 10-5 RIU. We discuss the influence of the region of interest (ROI) size on the achievable LOD. We fabricated a biochip by combining a microfluidic and a PCS and demonstrated autonomous transport. We analyzed the performance via refractive index steps and the biosensing ability via diluted glutathione S-transferase (GST) antibodies (1:250). In addition, we illustrate the speed of detection and demonstrate the advantage of the additional spatial information by detecting streptavidin (2.9 µg/mL). Finally, we present the detection of immunoglobulin G (IgG) from whole blood as a possible basis for point-of-care devices.


Asunto(s)
Técnicas Biosensibles , Técnicas Biosensibles/métodos , Microfluídica , Óptica y Fotónica , Refractometría/métodos , Límite de Detección
3.
Sensors (Basel) ; 23(5)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36904697

RESUMEN

The ion-sensitive field-effect transistor is a well-established electronic device typically used for pH sensing. The usability of the device for detecting other biomarkers in easily accessible biologic fluids, with dynamic range and resolution compliant with high-impact medical applications, is still an open research topic. Here, we report on an ion-sensitive field-effect transistor that is able to detect the presence of chloride ions in sweat with a limit-of-detection of 0.004 mol/m3. The device is intended for supporting the diagnosis of cystic fibrosis, and it has been designed considering two adjacent domains, namely the semiconductor and the electrolyte containing the ions of interest, by using the finite element method, which models the experimental reality with great accuracy. According to the literature explaining the chemical reactions that take place between the gate oxide and the electrolytic solution, we have concluded that anions directly interact with the hydroxyl surface groups and replace protons previously adsorbed from the surface. The achieved results confirm that such a device can be used to replace the traditional sweat test in the diagnosis and management of cystic fibrosis. In fact, the reported technology is easy-to-use, cost-effective, and non-invasive, leading to earlier and more accurate diagnoses.


Asunto(s)
Técnicas Biosensibles , Fibrosis Quística , Humanos , Cloruros/química , Sudoración , Potenciometría
4.
Sleep Breath ; 27(4): 1485-1489, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36378480

RESUMEN

PURPOSE: The diagnosis of obstructive sleep apnea (OSA) is instrument, operator, and time-dependent and therefore requires long waiting times. In recent decades, technological development has produced useful devices to monitor the health status of the population, including sleep. Therefore, the aim of this study was to evaluate a wearable device (WD) in a group of individuals at high risk of OSA. METHODS: The study was conducted on consecutive subjects with high risk of OSA assessed by sleep questionnaires and clinical evaluation. All subjects performed cardio-respiratory monitoring (CRM) and WD simultaneously on a single night, after which the parameters of the two sleep investigations were compared. RESULTS: Of 20 individuals enrolled, 60% were men and mean age was 57.3 ± 10.7 years. The apnea-hypopnea index (AHI) for the CRM was 23.1 ± 19.6 events·h-1 while it was 10.3 ± 8.3 events·h-1 for the WD. Correlation analysis between the results of the two investigations showed r = 0.19 (p = 0.40) for AHI and r = 0.4076 (p = 0.07) for sO2%. The accuracy for different stages of OSA severity was 70% in OSA cases and 60% in moderate to severe cases with sensitivity and specificity varying a great deal. CONCLUSION: Small and low-cost devices may prove to be a valuable resource to reduce costs and waiting times for a sleep investigation in suspected OSA. However, diagnosis of sleep apnea requires valid and reliable instruments, so validation tests are necessary before a device can be commercialized.


Asunto(s)
Apnea Obstructiva del Sueño , Dispositivos Electrónicos Vestibles , Masculino , Humanos , Persona de Mediana Edad , Anciano , Femenino , Polisomnografía/métodos , Sueño , Sensibilidad y Especificidad
5.
Biosensors (Basel) ; 11(11)2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34821665

RESUMEN

The recent improvements in diagnosis enabled by advances in liquid biopsy and oncological imaging significantly better cancer care. Both these complementary approaches, which are used for early tumor detection, characterization, and monitoring, can benefit from applying techniques based on surface-enhanced Raman scattering (SERS). With a detection sensitivity at the single-molecule level, SERS spectroscopy is widely used in cell and molecular biology, and its capability for the in vitro detection of several types of cancer biomarkers is well established. In the last few years, several intriguing SERS applications have emerged, including in vivo imaging for tumor targeting and the monitoring of drug release. In this paper, selected recent developments and trends in SERS applications in the field of liquid biopsy and tumor imaging are critically reviewed, with a special emphasis on results that demonstrate the clinical utility of SERS.


Asunto(s)
Biopsia Líquida , Neoplasias , Espectrometría Raman , Biomarcadores de Tumor/análisis , Humanos , Neoplasias/diagnóstico por imagen , Propiedades de Superficie
6.
Laser Photon Rev ; 15(1)2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35360260

RESUMEN

The recent development of sophisticated techniques capable of detecting extremely low concentrations of circulating tumor biomarkers in accessible body fluids, such as blood or urine, could contribute to a paradigm shift in cancer diagnosis and treatment. By applying such techniques, clinicians can carry out liquid biopsies, providing information on tumor presence, evolution, and response to therapy. The implementation of biosensing platforms for liquid biopsies is particularly complex because this application domain demands high selectivity/specificity and challenging limit-of-detection (LoD) values. The interest in photonics as an enabling technology for liquid biopsies is growing owing to the well-known advantages of photonic biosensors over competing technologies in terms of compactness, immunity to external disturbance, and ultra-high spatial resolution. Some encouraging experimental results in the field of photonic devices and systems for liquid biopsy have already been achieved by using fluorescent labels and label-free techniques and by exploiting super-resolution microscopy, surface plasmon resonance, surface-enhanced Raman scattering, and whispering gallery mode resonators. This paper critically reviews the current state-of-the-art, starting from the requirements imposed by the detection of the most common circulating biomarkers. Open research challenges are considered together with competing technologies, and the most promising paths of improvement are discussed for future applications.

7.
Opt Express ; 27(17): 24434-24444, 2019 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-31510332

RESUMEN

Photonic ring resonators can be considered building blocks of new concept satellite payloads for implementing several functions, such as filtering and sensing. In particular, the use of a high Q-factor ring resonator as sensing element into a Resonant Micro Optic Gyroscope (RMOG), provides a remarkable improvement of the performance with respect to the competitive technologies. To qualify a ring resonator for Space applications, the radiation effects on it in the Space must be carefully evaluated. Here, we investigate the effects of gamma radiation on a high Q InGaAsP/InP ring resonator, for the first time, to our knowledge. The ring resonator under study has a footprint of about 530 mm2 and it is based on a InGaAsP/InP rib waveguide, with a width of 2 µm and a thickness of 0.3 µm, formed on a 0.7 µm thick slab layer on an InP substrate 625 µm thick. For a total dose of about 320 krad Co60 gamma irradiation, a mean variation of about 13% and 4% was measured for Q and extinction ratio (ER), respectively, with respect to the values before irradiation (Q = 1.36 × 106, ER = 6.24 dB). Furthermore, the resonance peak red-shifts with a linear behaviour was observed increasing the total dose of the absorbed radiation, with a maximum resonance detuning of about 810 pm. These non-significant effects of a quite high gamma radiation dose confirm the potential of high-Q InP-based ring resonators into Space systems or subsystems.

8.
Biomed Opt Express ; 10(7): 3463-3471, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31467790

RESUMEN

Antimicrobial resistance (AMR) describes the ability of bacteria to become immune to antimicrobial treatments. Current testing for AMR is based on culturing methods that are very slow because they assess the average response of billions of bacteria. In principle, if tests were available that could assess the response of individual bacteria, they could be much faster. Here, we propose an electro-photonic approach for the analysis and the monitoring of susceptibility at the single-bacterium level. Our method employs optical tweezers based on photonic crystal cavities for the trapping of individual bacteria. While the bacteria are trapped, antibiotics can be added to the medium and the corresponding changes in the optical properties and motility of the bacteria be monitored via changes of the resonance wavelength and transmission. Furthermore, the proposed assay is able to monitor the impedance of the medium surrounding the bacterium, which allows us to record changes in metabolic rate in response to the antibiotic challenge. For example, our simulations predict a variation in measurable electrical current of up to 40% between dead and live bacteria. The proposed platform is the first, to our knowledge, that allows the parallel study of both the optical and the electrical response of individual bacteria to antibiotic challenge. Our platform opens up new lines of enquiry for monitoring the response of bacteria and it could lead the way towards the dissemination of a new generation of antibiogram study, which is relevant for the development of a point-of-care AMR diagnostics.

9.
Opt Express ; 26(4): 4593-4604, 2018 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-29475308

RESUMEN

The design of a continuously tunable optical delay line based on a compact graphene-based silicon Bragg grating is reported. High performance, in terms of electro-optical switching time (tswitch < 8 ns), delay range (Δτ = 200 ps), and figure of merit FOM = Δτ/A = 1.54x105 ps/mm2, has been achieved with an ultra-compact device footprint (A ~1.3 x 10-3 mm2), so improving the state-of-the-art of integrated optical delay lines. A continuous and complete tunability of the delay time can be achieved with a very low delay loss ( = 0.03 dB/ps) and a weak power consumption ( = 0.05 mW/ps). A flat bandwidth B = 1.19 GHz has been calculated by exploiting the slow-light effect in the device. This performance makes the proposed optical delay line suitable for several applications in Microwave Photonics (MWP), such as beamsteering/beamforming, for which large delay range, flat and wide bandwidth and small volume are required.

10.
Sensors (Basel) ; 17(8)2017 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-28783075

RESUMEN

In this paper, we report on the design of a bio-multisensing platform for the selective label-free detection of protein biomarkers, carried out through a 3D numerical algorithm. The platform includes a number of biosensors, each of them is based on a plasmonic nanocavity, consisting of a periodic metal structure to be deposited on a silicon oxide substrate. Light is strongly confined in a region with extremely small size (=1.57 µm²), to enhance the light-matter interaction. A surface sensitivity Ss = 1.8 nm/nm has been calculated together with a detection limit of 128 pg/mm². Such performance, together with the extremely small footprint, allow the integration of several devices on a single chip to realize extremely compact lab-on-chip microsystems. In addition, each sensing element of the platform has a good chemical stability that is guaranteed by the selection of gold for its fabrication.


Asunto(s)
Técnicas Biosensibles , Oro , Límite de Detección , Silicio
11.
Appl Spectrosc ; 71(3): 367-390, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28287314

RESUMEN

The ability to manipulate and sense biological molecules is important in many life science domains, such as single-molecule biophysics, the development of new drugs and cancer detection. Although the manipulation of biological matter at the nanoscale continues to be a challenge, several types of nanotweezers based on different technologies have recently been demonstrated to address this challenge. In particular, photonic and plasmonic nanotweezers are attracting a strong research effort especially because they are efficient and stable, they offer fast response time, and avoid any direct physical contact with the target object to be trapped, thus preventing its disruption or damage. In this paper, we critically review photonic and plasmonic resonant technologies for biomolecule trapping, manipulation, and sensing at the nanoscale, with a special emphasis on hybrid photonic/plasmonic nanodevices allowing a very strong light-matter interaction. The state-of-the-art of competing technologies, e.g., electronic, magnetic, acoustic and carbon nanotube-based nanotweezers, and a description of their applications are also included.

12.
Appl Opt ; 55(16): 4342-9, 2016 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-27411185

RESUMEN

The design of an integrated graphene-based fine-tunable optical delay line on silicon nitride for optical beamforming in phased-array antennas is reported. A high value of the optical delay time (τg=920 ps) together with a compact footprint (4.15 mm2) and optical loss <27 dB make this device particularly suitable for highly efficient steering in active phased-array antennas. The delay line includes two graphene-based Mach-Zehnder interferometer switches and two vertically stacked microring resonators between which a graphene capacitor is placed. The tuning range is obtained by varying the value of the voltage applied to the graphene electrodes, which controls the optical path of the light propagation and therefore the delay time. The graphene provides a faster reconfigurable time and low values of energy dissipation. Such significant advantages, together with a negligible beam-squint effect, allow us to overcome the limitations of conventional RF beamformers. A highly efficient fine-tunable optical delay line for the beamsteering of 20 radiating elements up to ±20° in the azimuth direction of a tile in a phased-array antenna of an X-band synthetic aperture radar has been designed.

13.
Opt Express ; 23(22): 28593-604, 2015 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-26561129

RESUMEN

A multi-analyte biosensing platform with ultra-high resolution ( = 0.2 ng/mL),-which is appropriate for the detection in the human serum of a wide range of biomarkers, e.g. those allowing the lung cancer early diagnosis, has been designed. The platform is based on a new configuration of planar ring resonator. The very strong light-matter interaction enabled by the micro-cavity allows a record limit-of-detection of 0.06 pg/mm(2), five times better than the state-of-the-art. The device with footprint = 2,200 µm(2) for each ring, due to its features, has the potential to be integrated in lab-on-chip microsystems for large-scale screenings of people with high risk of developing cancer.

14.
Opt Express ; 21(1): 556-64, 2013 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-23388949

RESUMEN

An InP ring resonator with an experimentally demonstrated quality factor (Q) of the order of 10(6) is reported for the first time. This Q value, typical for low loss technologies such as silica-on-silicon, is a record for the InP technology and improves the state-of-the-art of about one order of magnitude. The cavity has been designed aiming at the Q-factor maximization while keeping the resonance depth of about 8 dB. The device was fabricated using metal-organic vapour-phase-epitaxy, photolithography and reactive ion etching. It has been optically characterized and all its performance parameters have been estimated. InP waveguide loss low as 0.45 dB/cm has been measured, leading to a potential shot noise limited resolution of 10 °/h for a new angular velocity sensor.

15.
Sensors (Basel) ; 9(2): 1012-32, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-22399953

RESUMEN

A guided-wave chemical sensor for the detection of environmental pollutants or biochemical substances has been designed. The sensor is based on an asymmetric directional coupler employing slot optical waveguides. The use of a nanometer guiding structure where optical mode is confined in a low-index region permits a very compact sensor (device area about 1200 µm(2)) to be realized, having the minimum detectable refractive index change as low as 10(-5). Silicon-on-Insulator technology has been assumed in sensor design and a very accurate modelling procedure based on Finite Element Method and Coupled Mode Theory has been pointed out. Sensor design and optimization have allowed a very good trade-off between device length and sensitivity. Expected device sensitivity to glucose concentration change in an aqueous solution is of the order of 0.1 g/L.

16.
Sensors (Basel) ; 7(11): 2741-2749, 2007 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-28903258

RESUMEN

A very compact (device area around 40 µm²) optical ammonia sensor based on amicroring resonator is presented in this work. Silicon-on-insulator technology is used insensor design and a dye doped polymer is adopted as sensing material. The sensor exhibitsa very good linearity and a minimum detectable refractive index shift of sensing materialas low as 8x10-5, with a detection limit around 4 ‰.

17.
Opt Express ; 15(8): 4977-93, 2007 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-19532747

RESUMEN

A theoretical investigation of silicon-on-insulator nanometer slot waveguides for highly sensitive and compact chemical and biochemical integrated optical sensing is proposed. Slot guiding structures enabling high optical confinement in a low-index very small region are demonstrated to be very sensitive to either cover medium refractive index change or deposited receptor layer thickness increase. Modal and confinement properties of slot waveguides have been investigated, considering also the influence of fabrication tolerances. Waveguide sensitivity has been calculated and compared with that exhibited by other silicon nanometer guiding structures, such as rib or wire waveguides, or with experimental values in literature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA