Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 11: 561506, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33072021

RESUMEN

Petroleum is a very complex and diverse organic mixture. Its composition depends on reservoir location and in situ conditions and changes once crude oil is spilled into the environment, making the characteristics associated with every spill unique. Polycyclic aromatic hydrocarbons (PAHs) are common components of the crude oil and constitute a group of persistent organic pollutants. Due to their highly hydrophobic, and their low solubility tend to accumulate in soil and sediment. The process by which oil is sourced and made available for use is referred to as the oil supply chain and involves three parts: (1) upstream, (2) midstream and (3) downstream activities. As consequence from oil supply chain activities, crude oils are subjected to biodeterioration, acidification and souring, and oil spills are frequently reported affecting not only the environment, but also the economy and human resources. Different bioremediation techniques based on microbial metabolism, such as natural attenuation, bioaugmentation, biostimulation are promising approaches to minimize the environmental impact of oil spills. The rate and efficiency of this process depend on multiple factors, like pH, oxygen content, temperature, availability and concentration of the pollutants and diversity and structure of the microbial community present in the affected (contaminated) area. Emerging approaches, such as (meta-)taxonomics and (meta-)genomics bring new insights into the molecular mechanisms of PAH microbial degradation at both single species and community levels in oil reservoirs and groundwater/seawater spills. We have scrutinized the microbiological aspects of biodegradation of PAHs naturally occurring in oil upstream activities (exploration and production), and crude oil and/or by-products spills in midstream (transport and storage) and downstream (refining and distribution) activities. This work addresses PAH biodegradation in different stages of oil supply chain affecting diverse environments (groundwater, seawater, oil reservoir) focusing on genes and pathways as well as key players involved in this process. In depth understanding of the biodegradation process will provide/improve knowledge for optimizing and monitoring bioremediation in oil spills cases and/or to impair the degradation in reservoirs avoiding deterioration of crude oil quality.

2.
Environ Technol ; 38(9): 1139-1150, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27485801

RESUMEN

Microbial degradation of petroleum is a worldwide issue, which causes physico-chemical changes in its compounds, diminishing its commercial value. Biosurfactants are chemically diverse molecules that can be produced by several microorganisms and can enable microbial access to hydrocarbons. In order to investigate both microbial activities, function-driven screening assays for biosurfactant production and hydrocarbon biodegradation were carried out from a metagenomic fosmid library. It was constructed from the total DNA extracted from aerobic and anaerobic enrichments from a Brazilian biodegraded petroleum sample. A sum of 10 clones were selected in order to evaluate their ability to produce exopolymers (EPS) with emulsifying activity, as well as to characterize the gene sequences, harbored by the fosmid clones, through 454 pyrosequencing. Functional analyses confirmed the ability of some clones to produce surfactant compounds. Regarding hydrocarbon as microbial carbon sources, n-alkane (in mixture or not) and naphthalene were preferentially consumed as substrates. Analysis of sequence data set revealed the presence of genes related to xenobiotics biodegradation and carbohydrate metabolism. These data were corroborated by the results of hydrocarbon biodegradation and biosurfactant production detected in the evaluated clones.


Asunto(s)
Hidrocarburos/metabolismo , Metagenoma , Petróleo/metabolismo , Biodegradación Ambiental , Brasil , Biblioteca de Genes
3.
Extremophiles ; 21(1): 211-229, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27915388

RESUMEN

Microorganisms have shown their ability to colonize extreme environments including deep subsurface petroleum reservoirs. Physicochemical parameters may vary greatly among petroleum reservoirs worldwide and so do the microbial communities inhabiting these different environments. The present work aimed at the characterization of the microbiota in biodegraded and non-degraded petroleum samples from three Brazilian reservoirs and the comparison of microbial community diversity across oil reservoirs at local and global scales using 16S rRNA clone libraries. The analysis of 620 16S rRNA bacterial and archaeal sequences obtained from Brazilian oil samples revealed 42 bacterial OTUs and 21 archaeal OTUs. The bacterial community from the degraded oil was more diverse than the non-degraded samples. Non-degraded oil samples were overwhelmingly dominated by gammaproteobacterial sequences with a predominance of the genera Marinobacter and Marinobacterium. Comparisons of microbial diversity among oil reservoirs worldwide suggested an apparent correlation of prokaryotic communities with reservoir temperature and depth and no influence of geographic distance among reservoirs. The detailed analysis of the phylogenetic diversity across reservoirs allowed us to define a core microbiome encompassing three bacterial classes (Gammaproteobacteria, Clostridia, and Bacteroidia) and one archaeal class (Methanomicrobia) ubiquitous in petroleum reservoirs and presumably owning the abilities to sustain life in these environments.


Asunto(s)
Marinobacter/aislamiento & purificación , Microbiota , Yacimiento de Petróleo y Gas/microbiología , Archaea/genética , Archaea/aislamiento & purificación , Marinobacter/genética , Petróleo/metabolismo , Filogenia , ARN Ribosómico 16S/genética
4.
Genome Announc ; 1(6)2013 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-24179120

RESUMEN

Gordonia amicalis strain CCMA-559 was isolated from an oil-contaminated mangrove swamp and shown to produce biosurfactants. This strain is a strict aerobe that readily degrades an array of carbon sources, including N-acetylglucosamine, cellobiose, Tween 80, and 4-hydroxybenzoic acid, and, like other G. amicalis strains, likely desulfurizes dibenzothiophene.

5.
Genome Announc ; 1(5)2013 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-24029758

RESUMEN

Bacillus pumilus strain CCMA-560 was isolated from an oil-contaminated mangrove swamp and was shown to produce biosurfactants. The strain appears to be capable of degrading some plant cell wall-related compounds, including hemicelluose and pectin. Genes for biopolymer export and polysaccharide intercellular adhesin synthesis were also annotated.

6.
AMB Express ; 1: 47, 2011 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-22196374

RESUMEN

Several studies suggest that petroleum biodegradation can be achieved by either aerobic or anaerobic microorganisms, depending on oxygen input or other electron acceptors and appropriate nutrients. Evidence from in vitro experiments with samples of petroleum formation water and oils from Pampo Field indicate that petroleum biodegradation is more likely to be a joint achievement of both aerobic and anaerobic bacterial consortium, refining our previous observations of aerobic degradation. The aerobic consortium depleted, in decreasing order, hydrocarbons > hopanes > steranes > tricyclic terpanes while the anaerobic consortium depleted hydrocarbons > steranes > hopanes > tricyclic terpanes. The oxygen content of the mixed consortia was measured from time to time revealing alternating periods of microaerobicity (O2 ~0.8 mg.L-1) and of aerobicity (O2~6.0 mg.L-1). In this experiment, the petroleum biodegradation changed from time to time, alternating periods of biodegradation similar to the aerobic process and periods of biodegradation similar to the anaerobic process. The consortia showed preferences for metabolizing hydrocarbons > hopanes > steranes > tricyclic terpanes during a 90-day period, after which this trend changed and steranes were more biodegraded than hopanes. The analysis of aerobic oil degrading microbiota by the 16S rRNA gene clone library detected the presence of Bacillus, Brevibacterium, Mesorhizobium and Achromobacter, and the analysis of the anaerobic oil degrading microbiota using the same technique detected the presence of Bacillus and Acinetobacter (facultative strains). In the mixed consortia Stenotrophomonas, Brevibacterium, Bacillus, Rhizobium, Achromobacter and 5% uncultured bacteria were detected. This is certainly a new contribution to the study of reservoir biodegradation processes, combining two of the more important accepted hypotheses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA