RESUMEN
PURPOSE OF REVIEW: Sleep disturbances are amongst most frequent non-motor symptoms of Parkinson's Disease (PD), and they are similarly frequently reported in other alpha-syncleinopathies, such as Dementia with Lewy Bodies (DLB) and Multiple System Atrophy (MSA). More recently, the orexin system has been implicated in control of arousal based on salient environmental set points, and its dysregulation in sleep issues in alpha-synucleinopathies suggested by the findings from the translational animal models. However, its role in the patients with alpha-synucleinopathies remains unclear. We thus set to systematically review, and to critically assess, contemporary evidence on the association of the orexinergic system and sleep disturbances in alpha-synucleinopathies. In this systematic review, studies investigating orexin and sleep in alpha-synucleinopathies (Rapid Eye Movement (REM) Behaviour Disorder (RBD), Parkinson's Disease (PD), Dementia with Lewy Bodies (DLB), Multiple System Atrophy (MSA)) were identified using electronic database searches of PubMed, Web of Science and PsychINFO using MeSH terms, keywords, and title words such as "Alpha-synucleinopathies" AND "Orexin" AND "Sleep Disturbances". RECENT FINDINGS: 17 studies were included in this systemic review, of which 2 studies on RBD, 10 on PD, 4 on DLB, and 1 on MSA patients. Taken together, RBD and PD studies suggest a potential adaptive increase in orexin levels in early stages of the neurodegenerative process, with reduced levels more often reported for later, more advanced stages of illness. To date, no differences in orexin levels were demonstrated between MSA patients and healthy controls. There is a dearth of studies on the role of orexin levels in alpha-synucleinopathies. Moreover, significant methodologic limitations in the current body of work, including use of non-standardised research protocols and lack of prospective, multi-centre studies, disallow for any finite conclusion in regards to underlying pathomechanisms. Nonetheless, a picture of a complex, multifaceted relationship between the dysregulation of the orexinergic pathway and sleep disturbances in alpha-synucleinopathies is emerging. Hence, future studies disentangling orexinergic pathomechanisms of alpha-syncleinopathies are urgently needed to obtain a more comprehensive account of the role of orexinergic pathway in alpha-synucleinopathies. Pharmacological manipulations of orexins may have multiple therapeutic applications in treatment strategies, disease diagnosis, and might be effective for treating both motor and non-motor symptoms.
Asunto(s)
Orexinas , Trastornos del Sueño-Vigilia , Sinucleinopatías , Animales , Humanos , Enfermedad por Cuerpos de Lewy/sangre , Enfermedad por Cuerpos de Lewy/complicaciones , Enfermedad por Cuerpos de Lewy/metabolismo , Atrofia de Múltiples Sistemas/sangre , Atrofia de Múltiples Sistemas/complicaciones , Atrofia de Múltiples Sistemas/metabolismo , Orexinas/sangre , Orexinas/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/complicaciones , Trastornos del Sueño-Vigilia/sangre , Trastornos del Sueño-Vigilia/etiología , Trastornos del Sueño-Vigilia/metabolismo , Sinucleinopatías/sangre , Sinucleinopatías/complicaciones , Sinucleinopatías/metabolismoRESUMEN
The orexinergic system of the lateral hypothalamus plays crucial roles in arousal, feeding behavior, and reward modulation. Most research has focused on adult rodents, overlooking orexins' potential role in the nervous system development. This study, using electrophysiological and molecular tools, highlights importance of orexinergic signaling in the postnatal development of the rodent dorsolateral geniculate nucleus (DLG), a primary visual thalamic center. Orexin activation of DLG thalamocortical neurons occurs in a brief seven-day window around eye-opening, concurrent to transient OX2 receptor expression. Blocking OX2 receptors during this period reduces sensitivity of DLG neurons to green and blue light and lowers spontaneous firing rates in adulthood. This research reveals critical and temporally confined role of orexin signaling in postnatal brain development, emphasizing its contribution to experience-dependent refinement in the DLG and its long-term impact on visual function.
RESUMEN
A fundamental problem in neuroscience is how neurons select for their many inputs. A common assumption is that a neuron's selectivity is largely explained by differences in excitatory synaptic input weightings. Here we describe another solution to this important problem. We show that within the first order visual thalamus, the type of inhibition provided by thalamic interneurons has the potential to alter the input selectivity of thalamocortical neurons. To do this, we developed conductance injection protocols to compare how different types of synchronous and asynchronous GABA release influence thalamocortical excitability in response to realistic patterns of retinal ganglion cell input. We show that the asynchronous GABA release associated with tonic inhibition is particularly efficient at maintaining information content, ensuring that thalamocortical neurons can distinguish between their inputs. We propose a model where alterations in GABA release properties results in rapid changes in input selectivity without requiring structural changes in the network.
RESUMEN
Background: The sleep onset process is an ill-defined complex process of transition from wakefulness to sleep, characterized by progressive modifications at the subjective, behavioural, cognitive, and physiological levels. To this date, there is no international consensus which could aid a principled characterisation of this process for clinical research purposes. The current review aims to systemise the current knowledge about the underlying mechanisms of the natural heterogeneity of this process. Methods: In this systematic review, studies investigating the process of the sleep onset from 1970 to 2022 were identified using electronic database searches of PsychINFO, MEDLINE, and Embase. Results: A total of 139 studies were included; 110 studies in healthy participants and 29 studies in participants with sleep disorders. Overall, there is a limited consensus across a body of research about what distinct biomarkers of the sleep onset constitute. Only sparse data exists on the physiology, neurophysiology and behavioural mechanisms of the sleep onset, with majority of studies concentrating on the non-rapid eye movement stage 2 (NREM 2) as a potentially better defined and a more reliable time point that separates sleep from the wake, on the sleep wake continuum. Conclusions: The neurophysiologic landscape of sleep onset bears a complex pattern associated with a multitude of behavioural and physiological markers and remains poorly understood. The methodological variation and a heterogenous definition of the wake-sleep transition in various studies to date is understandable, given that sleep onset is a process that has fluctuating and ill-defined boundaries. Nonetheless, the principled characterisation of the sleep onset process is needed which will allow for a greater conceptualisation of the mechanisms underlying this process, further influencing the efficacy of current treatments for sleep disorders.
RESUMEN
Background: The presence of visual imagery in dreams of congenitally blind people has long been a matter of substantial controversy. We set to systematically review body of published work on the presence and nature of oneiric visuo-spatial impressions in congenitally and early blind subjects across different areas of research, from experimental psychology, functional neuroimaging, sensory substitution, and sleep research. Methods: Relevant studies were identified using the following databases: EMBASE, MEDLINE and PsychINFO. Results: Studies using diverse imaging techniques and sensory substitution devices broadly suggest that the "blind" occipital cortex may be able to integrate non-visual sensory inputs, and thus possibly also generate visuo-spatial impressions. Visual impressions have also been reported by blind subjects who had near-death or out-of-body experiences. Conclusion: Deciphering the mechanistic nature of these visual impression could open new possibility in utilization of neuroplasticity and its potential role for treatment of neurodisability.
RESUMEN
The pituitary gland regulates growth, metabolism, reproduction, the stress response, uterine contractions, lactation, and water retention. It secretes hormones in response to hypothalamic input, end organ feedback, and diurnal cues. The mechanisms by which pituitary stem cells are recruited to proliferate, maintain quiescence, or differentiate into specific cell types, especially thyrotropes, are not well understood. We used single-cell RNA sequencing in juvenile P7 mouse pituitary cells to identify novel factors in pituitary cell populations, with a focus on thyrotropes and rare subtypes. We first observed cells coexpressing markers of both thyrotropes and gonadotropes, such as Pou1f1 and Nr5a1. This was validated in vivo by both immunohistochemistry and lineage tracing of thyrotropes derived from Nr5a1-Cre; mTmG mice and demonstrates that Nr5a1-progenitors give rise to a proportion of thyrotropes during development. Our data set also identifies novel factors expressed in pars distalis and pars tuberalis thyrotropes, including the Shox2b isoform in all thyrotropes and Sox14 specifically in Pou1f1-negative pars tuberalis thyrotropes. We have therefore used single-cell transcriptomics to determine a novel developmental trajectory for thyrotropes and potential novel regulators of thyrotrope populations.
Asunto(s)
Enfermedades de la Hipófisis , Adenohipófisis , Embarazo , Femenino , Ratones , Animales , Tirotropina/metabolismo , Hipófisis/metabolismo , Factores de Transcripción/metabolismo , Enfermedades de la Hipófisis/metabolismo , Inmunohistoquímica , Adenohipófisis/metabolismo , Factores de Transcripción SOXB2/metabolismoRESUMEN
Introduction: Obstructive sleep apnoea (OSA) is a multisystem, debilitating, chronic disorder of breathing during sleep, resulting in a relatively consistent pattern of cognitive deficits. More recently, it has been argued that those cognitive deficits, especially in middle-aged patients, may be driven by cardiovascular and metabolic comorbidities, rather than by distinct OSA-processes, such as are for example ensuing nocturnal intermittent hypoxaemia, oxidative stress, neuroinflammation, and sleep fragmentation. Methods: Thus, we undertook to define cognitive performance in a group of 27 middle-aged male patients with untreated OSA, who had no concomitant comorbidities, compared with seven matched controls (AHI mean ± S.D.: 1.9 ± 1.4 events/h; mean age 34.0 ± 9.3 years; mean BMI 23.8 ± 2.3 kg/m2). Of the 27 patients, 16 had mild OSA (AHI mean ± S.D.:11.7 ± 4.0 events/h; mean age 42.6 ± 8.2 years; mean BMI 26.7 ± 4.1 kg/m2), and 11 severe OSA (AHI 41.8 ± 20.7 events/h; age: 46.9 ± 10.9 years, BMI: 28.0 ± 3.2 kg/m2). Results: In our patient cohort, we demonstrate poorer executive-functioning, visuospatial memory, and deficits in vigilance sustained attention, psychomotor and impulse control. Remarkably, we also report, for the first time, effects on social cognition in this group of male, middle-aged OSA patients. Conclusion: Our findings suggest that distinct, OSA-driven processes may be sufficient for cognitive changes to occur as early as in middle age, in otherwise healthy individuals.
RESUMEN
C-type natriuretic peptide (CNP) is highly expressed in the central nervous system (CNS) and key to neuronal development; however, a broader role for CNP in the CNS remains unclear. To address this deficit, we investigated behavioral, sensory and motor abnormalities and blood-brain barrier (BBB) integrity in a unique mouse model with inducible, global deletion of CNP (gbCNP-/-). gbCNP-/- mice and wild-type littermates at 12 (young adult) and 65 (aged) weeks of age were investigated for changes in gait and motor coordination (CatWalk™ and rotarod tests), anxiety-like behavior (open field and elevated zero maze tests), and motor and sensory function (modified neurological severity score [mNSS] and primary SHIRPA screen). Vascular permeability was assessed in vivo (Miles assay) with complementary in vitro studies conducted in primary murine brain endothelial cells. Young adult gbCNP-/- mice had normal gait but reduced motor coordination, increased locomotor activity in the open field and elevated zero maze, and had a higher mNSS score. Aged gbCNP-/- animals developed recurrent spontaneous seizures and had impaired gait and wide-ranging motor and sensory dysfunction. Young adult and aged gbCNP-/- mice exhibited increased BBB permeability, which was partially restored in vitro by CNP administration. Cultured brain endothelial cells from gbCNP-/- mice had an abnormal ZO-1 protein distribution. These data suggest that lack of CNP in the CNS impairs tight junction protein arrangement and increases BBB permeability, which is associated with changes in locomotor activity, motor coordination and late-onset seizures.
RESUMEN
The thalamus is an important hub for sensory information and participates in sensory perception, regulation of attention, arousal and sleep. These functions are executed primarily by glutamatergic thalamocortical neurons that extend axons to the cortex and initiate cortico-thalamocortical connectional loops. However, the thalamus also contains projection GABAergic neurons that do not extend axons toward the cortex. Here, we have harnessed recent insight into the development of the intergeniculate leaflet (IGL) and the ventral lateral geniculate nucleus (LGv) to specifically target and manipulate thalamic projection GABAergic neurons in female and male mice. Our results show that thalamic GABAergic neurons of the IGL and LGv receive retinal input from diverse classes of retinal ganglion cells (RGCs) but not from the M1 intrinsically photosensitive retinal ganglion cell (ipRGC) type. We describe the synergistic role of the photoreceptor melanopsin and the thalamic neurons of the IGL/LGv in circadian entrainment to dim light. We identify a requirement for the thalamic IGL/LGv neurons in the rapid changes in vigilance states associated with circadian light transitions.SIGNIFICANCE STATEMENT The intergeniculate leaflet (IGL) and ventral lateral geniculate nucleus (LGv) are part of the extended circadian system and mediate some nonimage-forming visual functions. Here, we show that each of these structures has a thalamic (dorsal) as well as prethalamic (ventral) developmental origin. We map the retinal input to thalamus-derived cells in the IGL/LGv complex and discover that while RGC input is dominant, this is not likely to originate from M1ipRGCs. We implicate thalamic cells in the IGL/LGv in vigilance state transitions at circadian light changes and in overt behavioral entrainment to dim light, the latter exacerbated by concomitant loss of melanopsin expression.
Asunto(s)
Ritmo Circadiano , Neuronas GABAérgicas , Luz , Células Ganglionares de la Retina , Animales , Femenino , Masculino , Ratones , Ritmo Circadiano/fisiología , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/fisiología , Cuerpos Geniculados/fisiología , Retina/metabolismo , Células Ganglionares de la Retina/fisiología , Núcleo Supraquiasmático/metabolismo , Tálamo/metabolismo , Tálamo/fisiologíaRESUMEN
BACKGROUND: CHD8 haploinsufficiency causes autism and macrocephaly with high penetrance in the human population. Chd8 heterozygous mice exhibit relatively subtle brain overgrowth and little gene expression changes in the embryonic neocortex. The purpose of this study was to generate new, sub-haploinsufficient Chd8 mouse models to allow us to identify and study the functions of CHD8 during embryonic cortical development. METHODS: To examine the possibility that certain phenotypes may only appear at sub-heterozygous Chd8 levels in the mouse, we created an allelic series of Chd8-deficient mice to reduce CHD8 protein levels to approximately 35% (mild hypomorph), 10% (severe hypomorph) and 0% (neural-specific conditional knockout) of wildtype levels. We used RNA sequencing to compare transcriptional dysregulation, structural MRI and brain weight to investigate effects on brain size, and cell proliferation, differentiation and apoptosis markers in immunostaining assays to quantify changes in neural progenitor fate. RESULTS: Mild Chd8 hypomorphs displayed significant postnatal lethality, with surviving animals exhibiting more pronounced brain hyperplasia than heterozygotes. Over 2000 genes were dysregulated in mild hypomorphs, including autism-associated neurodevelopmental and cell cycle genes. We identify increased proliferation of non-ventricular zone TBR2+ intermediate progenitors as one potential cause of brain hyperplasia in these mutants. Severe Chd8 hypomorphs displayed even greater transcriptional dysregulation, including evidence for p53 pathway upregulation. In contrast to mild hypomorphs, these mice displayed reduced brain size and increased apoptosis in the embryonic neocortex. Homozygous, conditional deletion of Chd8 in early neuronal progenitors resulted in pronounced brain hypoplasia, partly caused by p53 target gene derepression and apoptosis in the embryonic neocortex. Limitations Our findings identify an important role for the autism-associated factor CHD8 in controlling the proliferation of intermediate progenitors in the mouse neocortex. We propose that CHD8 has a similar function in human brain development, but studies on human cells are required to confirm this. Because many of our mouse mutants with reduced CHD8 function die shortly after birth, it is not possible to fully determine to what extent reduced CHD8 function results in autism-associated behaviours in mice. CONCLUSIONS: Together, these findings identify important, dosage-sensitive functions for CHD8 in p53 pathway repression, neurodevelopmental gene expression and neural progenitor fate in the embryonic neocortex. We conclude that brain development is acutely sensitive to reduced CHD8 expression and that the varying sensitivities of different progenitor populations and cellular processes to CHD8 dosage result in non-linear effects on gene transcription and brain growth. Shaun Hurley, Conor Mohan and Philipp Suetterlin have contributed equally to this work.
Asunto(s)
Trastorno Autístico/genética , Encéfalo/crecimiento & desarrollo , Proteínas de Unión al ADN/genética , Animales , Animales Recién Nacidos , Conducta Animal , Encéfalo/diagnóstico por imagen , Encéfalo/embriología , Proliferación Celular , Proteínas de Unión al ADN/deficiencia , Modelos Animales de Enfermedad , Femenino , Regulación del Desarrollo de la Expresión Génica , Ratones Transgénicos , Fenotipo , Embarazo , Células Madre , Proteína p53 Supresora de Tumor/genéticaRESUMEN
The ubiquitous presence of inhibitory interneurons in the thalamus of primates contrasts with the sparsity of interneurons reported in mice. Here, we identify a larger than expected complexity and distribution of interneurons across the mouse thalamus, where all thalamic interneurons can be traced back to two developmental programmes: one specified in the midbrain and the other in the forebrain. Interneurons migrate to functionally distinct thalamocortical nuclei depending on their origin: the abundant, midbrain-derived class populates the first and higher order sensory thalamus while the rarer, forebrain-generated class is restricted to some higher order associative regions. We also observe that markers for the midbrain-born class are abundantly expressed throughout the thalamus of the New World monkey marmoset. These data therefore reveal that, despite the broad variability in interneuron density across mammalian species, the blueprint of the ontogenetic organisation of thalamic interneurons of larger-brained mammals exists and can be studied in mice.
Asunto(s)
Linaje de la Célula , Interneuronas , Tálamo/crecimiento & desarrollo , Animales , Callithrix , Movimiento Celular , Femenino , Neuronas GABAérgicas , Regulación del Desarrollo de la Expresión Génica , Hibridación in Situ , Masculino , Mesencéfalo/crecimiento & desarrollo , Ratones , Ratones Transgénicos , Prosencéfalo/crecimiento & desarrollo , Tálamo/citologíaRESUMEN
Tegmental nuclei in the ventral midbrain and anterior hindbrain control motivated behavior, mood, memory, and movement. These nuclei contain inhibitory GABAergic and excitatory glutamatergic neurons, whose molecular diversity and development remain largely unraveled. Many tegmental neurons originate in the embryonic ventral rhombomere 1 (r1), where GABAergic fate is regulated by the transcription factor (TF) Tal1. We used single-cell mRNA sequencing of the mouse ventral r1 to characterize the Tal1-dependent and independent neuronal precursors. We describe gene expression dynamics during bifurcation of the GABAergic and glutamatergic lineages and show how active Notch signaling promotes GABAergic fate selection in post-mitotic precursors. We identify GABAergic precursor subtypes that give rise to distinct tegmental nuclei and demonstrate that Sox14 and Zfpm2, two TFs downstream of Tal1, are necessary for the differentiation of specific tegmental GABAergic neurons. Our results provide a framework for understanding the development of cellular diversity in the tegmental nuclei.
Asunto(s)
Neuronas GABAérgicas/metabolismo , Ácido Glutámico/metabolismo , Rombencéfalo/metabolismo , Tegmento Mesencefálico/metabolismo , Animales , Diferenciación Celular , Linaje de la Célula , Proteínas de Unión al ADN/metabolismo , Núcleo Dorsal del Rafe/metabolismo , Embrión de Mamíferos/citología , Femenino , Proteína Forkhead Box O1/metabolismo , Proteínas de Homeodominio/metabolismo , Masculino , Ratones Endogámicos C57BL , Células-Madre Neurales/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores Notch/metabolismo , Factores de Transcripción SOXB2/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína 1 de la Leucemia Linfocítica T Aguda/metabolismo , Factores de Transcripción/metabolismoRESUMEN
Oestrogens play an important role in brain development where they have been implicated in controlling various cellular processes. Several lines of evidence have been presented showing that oestrogens can be synthesized locally within the brain. Studies have demonstrated that aromatase, the enzyme responsible for the conversion of androgens to oestrogens, is expressed during early development in both male and female cortices. Furthermore, 17ß-oestradiol has been measured in foetal brain tissue from multiple species. 17ß-oestradiol regulates neural progenitor proliferation as well as the development of early neuronal morphology. However, what role locally derived oestrogens play in regulating cortical migration and, moreover, whether these effects are the same in males and females are unknown. Here, we investigated the impact of knockdown expression of Cyp19a1, which encodes aromatase, between embryonic day (E) 14.5 and postnatal day 0 (P0) had on neural migration within the cortex. Aromatase was expressed in the developing cortex of both sexes, but at significantly higher levels in male than female mice. Under basal conditions, no obvious differences in cortical migration between male and female mice were observed. However, knockdown of Cyp19a1 resulted in an increase in cells within the cortical plate, and a concurrent decrease in the subventricular zone/ventricular zone in P0 male mice. Interestingly, the opposite effect was observed in females, who displayed a significant reduction in cells migrating to the cortical plate. Together, these findings indicate that brain-derived oestrogens regulate radial migration through distinct mechanisms in males and females.
Asunto(s)
Encéfalo , Neuronas , Animales , Estradiol/farmacología , Estrógenos , Femenino , Ventrículos Laterales , Masculino , RatonesRESUMEN
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMEN
During development, the p75 neurotrophin receptor (p75NTR) is widely expressed in the nervous system where it regulates neuronal differentiation, migration and axonal outgrowth. p75NTR also mediates the survival and death of newly born neurons, with functional outcomes being dependent on both timing and cellular context. Here, we show that knockout of p75NTR from embryonic day 10 (E10) in neural progenitors using a conditional Nestin-Cre p75NTR floxed mouse causes increased apoptosis of progenitor cells. By E14.5, the number of Tbr2-positive progenitor cells was significantly reduced and the rate of neurogenesis was halved. Furthermore, in adult knockout mice, there were fewer cortical pyramidal neurons, interneurons, cholinergic basal forebrain neurons and striatal neurons, corresponding to a relative reduction in volume of these structures. Thalamic midline fusion during early postnatal development was also impaired in Nestin-Cre p75NTR floxed mice, indicating a novel role for p75NTR in the formation of this structure. The phenotype of this strain demonstrates that p75NTR regulates multiple aspects of brain development, including cortical progenitor cell survival, and that expression during early neurogenesis is required for appropriate formation of telencephalic structures.
Asunto(s)
Prosencéfalo Basal/embriología , Neocórtex/embriología , Neostriado/embriología , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Receptor de Factor de Crecimiento Nervioso/metabolismo , Tálamo/embriología , Animales , Animales Recién Nacidos , Caspasa 3/metabolismo , Proliferación Celular , Supervivencia Celular , Aparato de Golgi/metabolismo , Interneuronas/metabolismo , Ratones , Nestina/metabolismo , Neurogénesis , Neuronas/citología , Neuronas/metabolismo , Tamaño de los Órganos , Células Piramidales/metabolismoRESUMEN
Despite the crucial physiological processes governed by neurons in the hypothalamic arcuate nucleus (ARC), such as growth, reproduction and energy homeostasis, the developmental pathways and regulators for ARC neurons remain understudied. Our single cell RNA-seq analyses of mouse embryonic ARC revealed many cell type-specific markers for developing ARC neurons. These markers include transcription factors whose expression is enriched in specific neuronal types and often depleted in other closely-related neuronal types, raising the possibility that these transcription factors play important roles in the fate commitment or differentiation of specific ARC neuronal types. We validated this idea with the two transcription factors, Foxp2 enriched for Ghrh-neurons and Sox14 enriched for Kisspeptin-neurons, using Foxp2- and Sox14-deficient mouse models. Taken together, our single cell transcriptome analyses for the developing ARC uncovered a panel of transcription factors that are likely to form a gene regulatory network to orchestrate fate specification and differentiation of ARC neurons.
Asunto(s)
Núcleo Arqueado del Hipotálamo/citología , Regulación del Desarrollo de la Expresión Génica , Neuronas/metabolismo , Animales , Núcleo Arqueado del Hipotálamo/embriología , Factores de Transcripción Forkhead/genética , Perfilación de la Expresión Génica , Hormona Liberadora de Hormona del Crecimiento/metabolismo , Kisspeptinas/metabolismo , Ratones , Ratones Noqueados , Neurogénesis/genética , Proteínas Represoras/genética , Factores de Transcripción SOXB2/genética , Análisis de la Célula IndividualRESUMEN
Genes that are highly conserved in food seeking behaviour, such as protein kinase G (PKG), are of interest because of their potential role in the global obesity epidemic. PKG1α can be activated by binding of cyclic guanosine monophosphate (cGMP) or oxidant-induced interprotein disulfide bond formation between the two subunits of this homodimeric kinase. PKG1α activation by cGMP plays a role in reward and addiction through its actions in the ventral tegmental area (VTA) of the brain. 'Redox dead' C42S PKG1α knock-in (KI) mice, which are fully deficient in oxidant-induced disulfide-PKG1α formation, display increased food seeking and reward behaviour compared to wild-type (WT) littermates. Rewarding monoamines such as dopamine, which are released during feeding, are metabolised by monoamine oxidase to generate hydrogen peroxide that was shown to mediate PKG1α oxidation. Indeed, inhibition of monoamine oxidase, which prevents it producing hydrogen peroxide, attenuated PKG1α oxidation and increased sucrose preference in WT, but not KI mice. The deficient reward phenotype of the KI mice was rescued by expressing WT kinase that can form the disulfide state in the VTA using an adeno-associated virus, consistent with PKG1α oxidation providing a break on feeding behaviour. In conclusion, disulfide-PKG1α in VTA neurons acts as a negative regulator of feeding and therefore may provide a novel therapeutic target for obesity.
Asunto(s)
Proteína Quinasa Dependiente de GMP Cíclico Tipo I/metabolismo , Conducta Alimentaria , Oxidación-Reducción , Recompensa , Animales , Conducta Animal , Disulfuros/metabolismo , Dopamina/metabolismo , Dopamina/farmacología , Activación Enzimática/efectos de los fármacos , Femenino , Levodopa/metabolismo , Levodopa/farmacología , Masculino , Ratones , Ratones Noqueados , Monoaminooxidasa/metabolismo , Óxido Nítrico/metabolismo , Procesamiento Proteico-Postraduccional , Área Tegmental Ventral/efectos de los fármacos , Área Tegmental Ventral/metabolismoRESUMEN
We identify Sox14 as an exclusive marker of inhibitory projection neurons in the lateral and interposed, but not the medial, cerebellar nuclei. Sox14+ neurons make up â¼80% of Gad1+ neurons in these nuclei and are indistinguishable by soma size from other inhibitory neurons. All Sox14+ neurons of the lateral and interposed cerebellar nuclei are generated at approximately E10/10.5 and extend long-range, predominantly contralateral projections to the inferior olive. A small Sox14+ population in the adjacent vestibular nucleus "Y" sends an ipsilateral projection to the oculomotor nucleus. Cerebellar Sox14+ and glutamatergic projection neurons assemble in non-overlapping populations at the nuclear transition zone, and their integration into a coherent nucleus depends on Sox14 function. Targeted ablation of Sox14+ cells by conditional viral expression of diphtheria toxin leads to significantly impaired motor learning. Contrary to expectations, associative learning is unaffected by unilateral Sox14+ neuron elimination in the interposed and lateral nuclei.SIGNIFICANCE STATEMENT The cerebellar nuclei are central to cerebellar function, yet how they modulate and process cerebellar inputs and outputs is still primarily unknown. Our study gives a direct insight into how nucleo-olivary projection neurons are generated, their projections, and their function in an intact behaving mouse. These neurons play a critical conceptual role in all models of cerebellar function, and this study represents the first specific analysis of their molecular identity and function and offers a powerful model for future investigation of cerebellar function in motor control and learning.
Asunto(s)
Aprendizaje por Asociación/fisiología , Núcleos Cerebelosos/metabolismo , Núcleo Olivar/metabolismo , Factores de Transcripción SOXB2/deficiencia , Animales , Células Cultivadas , Núcleos Cerebelosos/química , Cerebelo/química , Cerebelo/metabolismo , Femenino , Locomoción/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Vías Nerviosas/química , Vías Nerviosas/metabolismo , Núcleo Olivar/química , Factores de Transcripción SOXB2/genéticaRESUMEN
Truncating CHD8 mutations are amongst the highest confidence risk factors for autism spectrum disorder (ASD) identified to date. Here, we report that Chd8 heterozygous mice display increased brain size, motor delay, hypertelorism, pronounced hypoactivity, and anomalous responses to social stimuli. Whereas gene expression in the neocortex is only mildly affected at midgestation, over 600 genes are differentially expressed in the early postnatal neocortex. Genes involved in cell adhesion and axon guidance are particularly prominent amongst the downregulated transcripts. Resting-state functional MRI identified increased synchronized activity in cortico-hippocampal and auditory-parietal networks in Chd8 heterozygous mutant mice, implicating altered connectivity as a potential mechanism underlying the behavioral phenotypes. Together, these data suggest that altered brain growth and diminished expression of important neurodevelopmental genes that regulate long-range brain wiring are followed by distinctive anomalies in functional brain connectivity in Chd8+/- mice. Human imaging studies have reported altered functional connectivity in ASD patients, with long-range under-connectivity seemingly more frequent. Our data suggest that CHD8 haploinsufficiency represents a specific subtype of ASD where neuropsychiatric symptoms are underpinned by long-range over-connectivity.
Asunto(s)
Encéfalo/fisiopatología , Proteínas de Unión al ADN/genética , Regulación del Desarrollo de la Expresión Génica/genética , Vías Nerviosas/fisiopatología , Animales , Trastorno del Espectro Autista/genética , Modelos Animales de Enfermedad , Haploinsuficiencia , Ratones , Ratones Noqueados , Neocórtex/metabolismo , TranscriptomaRESUMEN
The release of GABA from local interneurons in the dorsal lateral geniculate nucleus (dLGN-INs) provides inhibitory control during visual processing within the thalamus. It is commonly assumed that this important class of interneurons originates from within the thalamic complex, but we now show that during early postnatal development Sox14/Otx2-expressing precursor cells migrate from the dorsal midbrain to generate dLGN-INs. The unexpected extra-diencephalic origin of dLGN-INs sets them apart from GABAergic neurons of the reticular thalamic nucleus. Using optogenetics we show that at increased firing rates tectal-derived dLGN-INs generate a powerful form of tonic inhibition that regulates the gain of thalamic relay neurons through recruitment of extrasynaptic high-affinity GABAA receptors. Therefore, by revising the conventional view of thalamic interneuron ontogeny we demonstrate how a previously unappreciated mesencephalic population controls thalamic relay neuron excitability.