Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Eur Ann Otorhinolaryngol Head Neck Dis ; 133 Suppl 1: S66-7, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27246746

RESUMEN

The volume of the cochlea is a key parameter for electrode-array design. Indeed, it constrains the diameter of the electrode-array for low-traumatic positioning in the scala timpani. The present report shows a model of scala timpani volume extraction from temporal bones images in order to estimate a maximum diameter of an electrode-array. Nine temporal bones were used, and passed to high-resolution computed tomography scan. Using image-processing techniques, scala timpani were extracted from images, and cross-section areas were estimated along cochlear turns. Cochlear implant electrode-array was fitted in these cross-sections. Results show that the electrode-array diameter is small enough to fit in the scala timpani, however the diameter is restricted at the apical part.


Asunto(s)
Cóclea/anatomía & histología , Implantación Coclear/métodos , Implantes Cocleares , Ajuste de Prótesis , Humanos , Diseño de Prótesis , Hueso Temporal/diagnóstico por imagen , Tomografía Computarizada por Rayos X
2.
Langmuir ; 30(19): 5620-7, 2014 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-24773519

RESUMEN

A critical advantage of electrostatic assemblies over covalent and crystalline bound materials is that associated structures can be disassembled into their original constituents. Nanoscale devices designed for the controlled release of functional molecules already exploit this property. To bring some insight into the mechanisms of disassembly and release, we study the disruption of molecular electrostatics-based interactions via competitive binding with ionic surfactants. To this aim, free-standing micrometer-size wires were synthesized using oppositely charged poly(diallyldimethylammonium chloride) and poly(acrylic acid) coated iron oxide nanoparticles. The disassembly is induced by the addition of sodium dodecyl sulfates that complex preferentially the positive polymers. The process is investigated at two different length scales: the length scale of the particles (10 nm) through the quartz crystal microbalance technique and that of the wires (>1 µm) via optical microscopy. Upon surfactant addition, the disassembly is initiated at the surface of the wires by the release of nanoparticles and by the swelling of the structure. In a second step, erosion involving larger pieces takes over and culminates in the complete dissolution of the wires, confirming the hypothesis of a surface-type swelling and erosion process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...