Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
iScience ; 25(7): 104520, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35754722

RESUMEN

Phagocytes migrate into tissues to combat infection and maintain tissue homeostasis. As dysregulated phagocyte migration and function can lead to inflammation or susceptibility to infection, identifying molecules that control these processes is critical. Here, we show that the tetraspanin CD82 restrains the migration of neutrophils and macrophages into tissues. Cd82 -/- phagocytes exhibited excessive migration during in vivo models of peritoneal inflammation, superfusion of CXCL1, retinopathy of prematurity, and infection with the protozoan parasite L. mexicana. However, with the latter, while Cd82 -/- macrophages infiltrated infection sites at higher proportions, cutaneous L. mexicana lesions were larger and persisted, indicating a failure to control infection. Analyses of in vitro bone-marrow-derived macrophages showed CD82 deficiency altered cellular morphology, and impaired gene expression and metabolism in response to anti-inflammatory activation. Altogether, this work reveals an important role for CD82 in restraining phagocyte infiltration and mediating their differentiation in response to stimulatory cues.

2.
Cell Rep ; 39(13): 111006, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35767951

RESUMEN

T cells depend on the phosphatase CD45 to initiate T cell receptor signaling. Although the critical role of CD45 in T cells is established, the mechanisms controlling function and localization in the membrane are not well understood. Moreover, the regulation of specific CD45 isoforms in T cell signaling remains unresolved. By using unbiased mass spectrometry, we identify the tetraspanin CD53 as a partner of CD45 and show that CD53 controls CD45 function and T cell activation. CD53-negative T cells (Cd53-/-) exhibit substantial proliferation defects, and Cd53-/- mice show impaired tumor rejection and reduced IFNγ-producing T cells compared with wild-type mice. Investigation into the mechanism reveals that CD53 is required for CD45RO expression and mobility. In addition, CD53 is shown to stabilize CD45 on the membrane and is required for optimal phosphatase activity and subsequent Lck activation. Together, our findings reveal CD53 as a regulator of CD45 activity required for T cell immunity.


Asunto(s)
Linfocitos T , Tetraspanina 25 , Animales , Movimiento Celular/inmunología , Antígenos Comunes de Leucocito/inmunología , Activación de Linfocitos , Ratones , Isoformas de Proteínas , Receptores de Antígenos de Linfocitos T/inmunología , Transducción de Señal , Linfocitos T/inmunología , Tetraspanina 25/inmunología
3.
J Immunol ; 205(2): 521-532, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32532837

RESUMEN

The importance of tetraspanin proteins in regulating migration has been demonstrated in many diverse cellular systems. However, the function of the leukocyte-restricted tetraspanin CD53 remains obscure. We therefore hypothesized that CD53 plays a role in regulating leukocyte recruitment and tested this hypothesis by examining responses of CD53-deficient mice to a range of inflammatory stimuli. Deletion of CD53 significantly reduced neutrophil recruitment to the acutely inflamed peritoneal cavity. Intravital microscopy revealed that in response to several inflammatory and chemotactic stimuli, absence of CD53 had only minor effects on leukocyte rolling and adhesion in postcapillary venules. In contrast, Cd53-/- mice showed a defect in leukocyte transmigration induced by TNF, CXCL1 and CCL2, and a reduced capacity for leukocyte retention on the endothelial surface under shear flow. Comparison of adhesion molecule expression in wild-type and Cd53-/- neutrophils revealed no alteration in expression of ß2 integrins, whereas L-selectin was almost completely absent from Cd53-/- neutrophils. In addition, Cd53-/- neutrophils showed defects in activation-induced cytoskeletal remodeling and translocation to the cell periphery, responses necessary for efficient transendothelial migration, as well as increased α3 integrin expression. These alterations were associated with effects on inflammation, so that in Cd53-/- mice, the onset of neutrophil-dependent serum-induced arthritis was delayed. Together, these findings demonstrate a role for tetraspanin CD53 in promotion of neutrophil transendothelial migration and inflammation, associated with CD53-mediated regulation of L-selectin expression, attachment to the endothelial surface, integrin expression and trafficking, and cytoskeletal function.


Asunto(s)
Artritis Experimental/inmunología , Artritis Reumatoide/inmunología , Citoesqueleto/metabolismo , Integrina alfa3/metabolismo , Selectina L/metabolismo , Neutrófilos/fisiología , Tetraspanina 25/metabolismo , Animales , Quimiocina CCL2/metabolismo , Quimiocina CXCL1/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Migración Transendotelial y Transepitelial
4.
iScience ; 23(5): 101104, 2020 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-32428859

RESUMEN

Tetraspanins regulate key processes in immune cells; however, the function of the leukocyte-restricted tetraspanin CD53 is unknown. Here we show that CD53 is essential for lymphocyte recirculation. Lymph nodes of Cd53-/- mice were smaller than those of wild-type mice due to a marked reduction in B cells and a 50% decrease in T cells. This reduced cellularity reflected an inability of Cd53-/- B and T cells to efficiently home to lymph nodes, due to the near absence of L-selectin from Cd53-/- B cells and reduced stability of L-selectin on Cd53-/- T cells. Further analyses, including on human lymphocytes, showed that CD53 stabilizes L-selectin surface expression and may restrain L-selectin shedding via both ADAM17-dependent and ADAM17-independent mechanisms. The disruption in lymphocyte recirculation in Cd53-/- mice led to impaired immune responses dependent on antigen delivery to lymph nodes. Together these findings demonstrate an essential role for CD53 in lymphocyte trafficking and immunity.

5.
J Immunol ; 196(3): 978-87, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26729805

RESUMEN

This study supports a new concept where the opposing functions of the tetraspanins CD37 and CD82 may coordinate changes in migration and Ag presentation during dendritic cell (DC) activation. We have previously published that CD37 is downregulated upon monocyte-derived DC activation, promotes migration of both skin and bone marrow-derived dendritic cells (BMDCs), and restrains Ag presentation in splenic and BMDCs. In this article, we show that CD82, the closest phylogenetic relative to CD37, appears to have opposing functions. CD82 is upregulated upon activation of BMDCs and monocyte-derived DCs, restrains migration of skin and BMDCs, supports MHC class II maturation, and promotes stable interactions between T cells and splenic DCs or BMDCs. The underlying mechanism involves the rearrangement of the cytoskeleton via a differential activation of small GTPases. Both CD37(-/-) and CD82(-/-) BMDCs lack cellular projections, but where CD37(-/-) BMDCs spread poorly on fibronectin, CD82(-/-) BMDCs are large and spread to a greater extent than wild-type BMDCs. At the molecular level, CD82 is a negative regulator of RhoA, whereas CD37 promotes activation of Rac-1; both tetraspanins negatively regulate Cdc42. Thus, this study identifies a key aspect of DC biology: an unactivated BMDC is CD37(hi)CD82(lo), resulting in a highly motile cell with a limited ability to activate naive T cells. By contrast, a late activated BMDC is CD37(lo)CD82(hi), and thus has modified its migratory, cytoskeletal, and Ag presentation machinery to become a cell superbly adapted to activating naive T cells.


Asunto(s)
Presentación de Antígeno/inmunología , Antígenos CD/inmunología , Antígenos de Neoplasias/inmunología , Movimiento Celular , Células Dendríticas/inmunología , Proteína Kangai-1/inmunología , Activación de Linfocitos/inmunología , Linfocitos T/inmunología , Tetraspaninas/inmunología , Animales , Separación Celular , Técnicas de Cocultivo , Células Dendríticas/citología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Reacción en Cadena de la Polimerasa
6.
Eur J Immunol ; 43(5): 1208-19, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23420539

RESUMEN

Previous studies on the role of the tetraspanin CD37 in cellular immunity appear contradictory. In vitro approaches indicate a negative regulatory role, whereas in vivo studies suggest that CD37 is necessary for optimal cellular responses. To resolve this discrepancy, we studied the adaptive cellular immune responses of CD37(-/-) mice to intradermal challenge with either tumors or model antigens and found that CD37 is essential for optimal cell-mediated immunity. We provide evidence that an increased susceptibility to tumors observed in CD37(-/-) mice coincides with a striking failure to induce antigen-specific IFN-γ-secreting T cells. We also show that CD37 ablation impairs several aspects of DC function including: in vivo migration from skin to draining lymph nodes; chemo-tactic migration; integrin-mediated adhesion under flow; the ability to spread and form actin protrusions and in vivo priming of adoptively transferred naïve T cells. In addition, multiphoton microscopy-based assessment of dermal DC migration demonstrated a reduced rate of migration and increased randomness of DC migration in CD37(-/-) mice. Together, these studies are consistent with a model in which the cellular defect that underlies poor cellular immune induction in CD37(-/-) mice is impaired DC migration.


Asunto(s)
Antígenos CD/inmunología , Antígenos de Neoplasias/inmunología , Movimiento Celular/inmunología , Células Dendríticas/inmunología , Inmunidad Celular , Tetraspaninas/inmunología , Inmunidad Adaptativa , Traslado Adoptivo , Animales , Antígenos CD/genética , Antígenos de Neoplasias/genética , Adhesión Celular/inmunología , Proliferación Celular , Células Dendríticas/patología , Femenino , Expresión Génica , Interferón gamma/biosíntesis , Interferón gamma/inmunología , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/patología , Linfoma de Células T/genética , Linfoma de Células T/inmunología , Linfoma de Células T/patología , Ratones , Ratones Noqueados , Microscopía Confocal , Trasplante de Neoplasias , Piel/inmunología , Piel/patología , Linfocitos T/citología , Linfocitos T/inmunología , Linfocitos T/trasplante , Tetraspaninas/deficiencia , Tetraspaninas/genética
7.
Biochem Soc Trans ; 39(2): 506-11, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21428929

RESUMEN

Tetraspanins are a superfamily of integral membrane proteins involved in the organization of microdomains that consist of both cell membrane proteins and cytoplasmic signalling molecules. These microdomains are important in regulating molecular recognition at the cell surface and subsequent signal transduction processes central to the generation of an efficient immune response. Tetraspanins, both immune-cell-specific, such as CD37, and ubiquitously expressed, such as CD81, have been shown to be imp-ortant in both innate and adaptive cellular immunity. This is via their molecular interaction with important immune cell-surface molecules such as antigen-presenting MHC proteins, T-cell co-receptors CD4 and CD8, as well as cytoplasmic molecules such as Lck and PKC (protein kinase C). Moreover, the generation of tetraspanin-deficient mice has enabled the study of these proteins in immunity. A variety of tetraspanins have a role in the regulation of pattern recognition, antigen presentation and T-cell proliferation. Recent studies have also begun to elucidate roles for tetraspanins in macrophages, NK cells (natural killer cells) and granulocytes.


Asunto(s)
Antígenos CD/fisiología , Inmunidad Celular/fisiología , Animales , Presentación de Antígeno/genética , Presentación de Antígeno/fisiología , Antígenos CD/genética , Antígenos CD/inmunología , Antígenos CD/metabolismo , Humanos , Inmunidad Celular/genética , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Células Asesinas Naturales/fisiología , Ratones , Modelos Biológicos , Linfocitos T/inmunología , Linfocitos T/metabolismo , Linfocitos T/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...