Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 9(37): eadd9084, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37703363

RESUMEN

The mechanistic target of rapamycin complex 1 (mTORC1) is part of the amino acid sensing machinery that becomes activated on the endolysosomal surface in response to nutrient cues. Branched actin generated by WASH and Arp2/3 complexes defines endolysosomal microdomains. Here, we find mTORC1 components in close proximity to endolysosomal actin microdomains. We investigated for interactors of the mTORC1 lysosomal tether, RAGC, by proteomics and identified multiple actin filament capping proteins and their modulators. Perturbation of RAGC function affected the size of endolysosomal actin, consistent with a regulation of actin filament capping by RAGC. Reciprocally, the pharmacological inhibition of actin polymerization or alteration of endolysosomal actin obtained upon silencing of WASH or Arp2/3 complexes impaired mTORC1 activity. Mechanistically, we show that actin is required for proper association of RAGC and mTOR with endolysosomes. This study reveals an unprecedented interplay between actin and mTORC1 signaling on the endolysosomal system.


Asunto(s)
Actinas , Transducción de Señal , Diana Mecanicista del Complejo 1 de la Rapamicina , Citoesqueleto de Actina , Lisosomas
2.
Nat Cell Biol ; 25(9): 1303-1318, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37563253

RESUMEN

Cell growth is regulated by the mammalian/mechanistic target of rapamycin complex 1 (mTORC1), which functions both as a nutrient sensor and a master controller of virtually all biosynthetic pathways. This ensures that cells are metabolically active only when conditions are optimal for growth. Notably, although mTORC1 is known to regulate fatty acid biosynthesis, how and whether the cellular lipid biosynthetic capacity signals back to fine-tune mTORC1 activity remains poorly understood. Here we show that mTORC1 senses the capacity of a cell to synthesise fatty acids by detecting the levels of malonyl-CoA, an intermediate of this biosynthetic pathway. We find that, in both yeast and mammalian cells, this regulation is direct, with malonyl-CoA binding to the mTOR catalytic pocket and acting as a specific ATP-competitive inhibitor. When fatty acid synthase (FASN) is downregulated/inhibited, elevated malonyl-CoA levels are channelled to proximal mTOR molecules that form direct protein-protein interactions with acetyl-CoA carboxylase 1 (ACC1) and FASN. Our findings represent a conserved and unique homeostatic mechanism whereby impaired fatty acid biogenesis leads to reduced mTORC1 activity to coordinately link this metabolic pathway to the overall cellular biosynthetic output. Moreover, they reveal the existence of a physiological metabolite that directly inhibits the activity of a signalling kinase in mammalian cells by competing with ATP for binding.


Asunto(s)
Acetil-CoA Carboxilasa , Malonil Coenzima A , Animales , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Malonil Coenzima A/metabolismo , Serina-Treonina Quinasas TOR/genética , Ácidos Grasos/metabolismo , Mamíferos/metabolismo , Adenosina Trifosfato
3.
EMBO Rep ; 24(7): e56574, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37212043

RESUMEN

Dysregulation of the activity of the mechanistic target of rapamycin complex 1 (mTORC1) is commonly linked to aging, cancer, and genetic disorders such as tuberous sclerosis (TS), a rare neurodevelopmental multisystemic disease characterized by benign tumors, seizures, and intellectual disability. Although patches of white hair on the scalp (poliosis) are considered as early signs of TS, the underlying molecular mechanisms and potential involvement of mTORC1 in hair depigmentation remain unclear. Here, we have used healthy, organ-cultured human scalp hair follicles (HFs) to interrogate the role of mTORC1 in a prototypic human (mini-)organ. Gray/white HFs exhibit high mTORC1 activity, while mTORC1 inhibition by rapamycin stimulated HF growth and pigmentation, even in gray/white HFs that still contained some surviving melanocytes. Mechanistically, this occurred via increased intrafollicular production of the melanotropic hormone, α-MSH. In contrast, knockdown of intrafollicular TSC2, a negative regulator of mTORC1, significantly reduced HF pigmentation. Our findings introduce mTORC1 activity as an important negative regulator of human HF growth and pigmentation and suggest that pharmacological mTORC1 inhibition could become a novel strategy in the management of hair loss and depigmentation disorders.


Asunto(s)
Folículo Piloso , Pigmentación , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Pigmentación/genética , Melanocitos , Color del Cabello/genética
4.
Aging Cell ; 22(8): e13888, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37222020

RESUMEN

Rapamycin is a macrolide antibiotic that functions as an immunosuppressive and anti-cancer agent, and displays robust anti-ageing effects in multiple organisms including humans. Importantly, rapamycin analogues (rapalogs) are of clinical importance against certain cancer types and neurodevelopmental diseases. Although rapamycin is widely perceived as an allosteric inhibitor of mTOR (mechanistic target of rapamycin), the master regulator of cellular and organismal physiology, its specificity has not been thoroughly evaluated so far. In fact, previous studies in cells and in mice hinted that rapamycin may be also acting independently from mTOR to influence various cellular processes. Here, we generated a gene-edited cell line that expresses a rapamycin-resistant mTOR mutant (mTORRR ) and assessed the effects of rapamycin treatment on the transcriptome and proteome of control or mTORRR -expressing cells. Our data reveal a striking specificity of rapamycin towards mTOR, demonstrated by virtually no changes in mRNA or protein levels in rapamycin-treated mTORRR cells, even following prolonged drug treatment. Overall, this study provides the first unbiased and conclusive assessment of rapamycin's specificity, with potential implications for ageing research and human therapeutics.


Asunto(s)
Inhibidores mTOR , Transducción de Señal , Ratones , Humanos , Animales , Línea Celular Tumoral , Serina-Treonina Quinasas TOR/metabolismo , Sirolimus/farmacología , Sirolimus/uso terapéutico , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo
6.
Nat Cell Biol ; 24(9): 1394-1406, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36097072

RESUMEN

Amino acid availability controls mTORC1 activity via a heterodimeric Rag GTPase complex that functions as a scaffold at the lysosomal surface, bringing together mTORC1 with its activators and effectors. Mammalian cells express four Rag proteins (RagA-D) that form dimers composed of RagA/B bound to RagC/D. Traditionally, the Rag paralogue pairs (RagA/B and RagC/D) are referred to as functionally redundant, with the four dimer combinations used interchangeably in most studies. Here, by using genetically modified cell lines that express single Rag heterodimers, we uncover a Rag dimer code that determines how amino acids regulate mTORC1. First, RagC/D differentially define the substrate specificity downstream of mTORC1, with RagD promoting phosphorylation of its lysosomal substrates TFEB/TFE3, while both Rags are involved in the phosphorylation of non-lysosomal substrates such as S6K. Mechanistically, RagD recruits mTORC1 more potently to lysosomes through increased affinity to the anchoring LAMTOR complex. Furthermore, RagA/B specify the signalling response to amino acid removal, with RagB-expressing cells maintaining lysosomal and active mTORC1 even upon starvation. Overall, our findings reveal key qualitative differences between Rag paralogues in the regulation of mTORC1, and underscore Rag gene duplication and diversification as a potentially impactful event in mammalian evolution.


Asunto(s)
Aminoácidos , Transducción de Señal , Aminoácidos/metabolismo , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Lisosomas/metabolismo , Mamíferos/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Transducción de Señal/fisiología
7.
Nat Aging ; 2(9): 796-808, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-37118503

RESUMEN

Changes in splicing fidelity are associated with loss of homeostasis and aging, yet only a handful of splicing factors have been shown to be causally required to promote longevity, and the underlying mechanisms and downstream targets in these paradigms remain elusive. Surprisingly, we found a hypomorphic mutation within ribonucleoprotein RNP-6/poly(U)-binding factor 60 kDa (PUF60), a spliceosome component promoting weak 3'-splice site recognition, which causes aberrant splicing, elevates stress responses and enhances longevity in Caenorhabditis elegans. Through genetic suppressor screens, we identify a gain-of-function mutation within rbm-39, an RNP-6-interacting splicing factor, which increases nuclear speckle formation, alleviates splicing defects and curtails longevity caused by rnp-6 mutation. By leveraging the splicing changes induced by RNP-6/RBM-39 activities, we uncover intron retention in egl-8/phospholipase C ß4 (PLCB4) as a key splicing target prolonging life. Genetic and biochemical evidence show that neuronal RNP-6/EGL-8 downregulates mammalian target of rapamycin complex 1 (mTORC1) signaling to control organismal lifespan. In mammalian cells, PUF60 downregulation also potently and specifically inhibits mTORC1 signaling. Altogether, our results reveal that splicing fidelity modulates lifespan through mTOR signaling.


Asunto(s)
Proteínas de Caenorhabditis elegans , Empalmosomas , Animales , Empalmosomas/genética , Longevidad/genética , Intrones/genética , Proteínas de Caenorhabditis elegans/genética , Factores de Empalme de ARN/genética , Caenorhabditis elegans/genética , Ribonucleoproteínas/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Mamíferos/genética
8.
Cell Stress ; 5(11): 173-175, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34782889

RESUMEN

Cellular adaptation to stress is a crucial homeostatic process for survival, metabolism, physiology, and disease. Cells respond to stress stimuli (e.g., nutrient starvation, growth factor deprivation, hypoxia, low energy, etc.) by changing the activity of signaling pathways, and interact with their environment by qualitatively and quantitatively modifying their intracellular, surface, and extracellular proteomes. How this delicate communication takes place is a hot topic in cell biological research, and has important implications for human disease.

9.
Mol Cell ; 81(16): 3275-3293.e12, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34245671

RESUMEN

Cells communicate with their environment via surface proteins and secreted factors. Unconventional protein secretion (UPS) is an evolutionarily conserved process, via which distinct cargo proteins are secreted upon stress. Most UPS types depend upon the Golgi-associated GRASP55 protein. However, its regulation and biological role remain poorly understood. Here, we show that the mechanistic target of rapamycin complex 1 (mTORC1) directly phosphorylates GRASP55 to maintain its Golgi localization, thus revealing a physiological role for mTORC1 at this organelle. Stimuli that inhibit mTORC1 cause GRASP55 dephosphorylation and relocalization to UPS compartments. Through multiple, unbiased, proteomic analyses, we identify numerous cargoes that follow this unconventional secretory route to reshape the cellular secretome and surfactome. Using MMP2 secretion as a proxy for UPS, we provide important insights on its regulation and physiological role. Collectively, our findings reveal the mTORC1-GRASP55 signaling hub as the integration point in stress signaling upstream of UPS and as a key coordinator of the cellular adaptation to stress.


Asunto(s)
Proteínas de la Matriz de Golgi/genética , Proteoma/genética , Proteómica , Estrés Fisiológico/genética , Matriz Extracelular/genética , Aparato de Golgi/genética , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Proteínas de la Membrana/genética , Transporte de Proteínas/genética , Transducción de Señal/genética
10.
Mol Cell ; 81(13): 2705-2721.e8, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33974911

RESUMEN

The TSC complex is a critical negative regulator of the small GTPase Rheb and mTORC1 in cellular stress signaling. The TSC2 subunit contains a catalytic GTPase activating protein domain and interacts with multiple regulators, while the precise function of TSC1 is unknown. Here we provide a structural characterization of TSC1 and define three domains: a C-terminal coiled-coil that interacts with TSC2, a central helical domain that mediates TSC1 oligomerization, and an N-terminal HEAT repeat domain that interacts with membrane phosphatidylinositol phosphates (PIPs). TSC1 architecture, oligomerization, and membrane binding are conserved in fungi and humans. We show that lysosomal recruitment of the TSC complex and subsequent inactivation of mTORC1 upon starvation depend on the marker lipid PI3,5P2, demonstrating a role for lysosomal PIPs in regulating TSC complex and mTORC1 activity via TSC1. Our study thus identifies a vital role of TSC1 in TSC complex function and mTORC1 signaling.


Asunto(s)
Chaetomium , Proteínas Fúngicas , Lisosomas , Diana Mecanicista del Complejo 1 de la Rapamicina , Fosfatos de Fosfatidilinositol , Serina C-Palmitoiltransferasa , Chaetomium/química , Chaetomium/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Lisosomas/química , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/química , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Fosfatos de Fosfatidilinositol/química , Fosfatos de Fosfatidilinositol/metabolismo , Serina C-Palmitoiltransferasa/química , Serina C-Palmitoiltransferasa/metabolismo
11.
Cell ; 184(3): 655-674.e27, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33497611

RESUMEN

Ras GTPase-activating protein-binding proteins 1 and 2 (G3BP1 and G3BP2, respectively) are widely recognized as core components of stress granules (SGs). We report that G3BPs reside at the cytoplasmic surface of lysosomes. They act in a non-redundant manner to anchor the tuberous sclerosis complex (TSC) protein complex to lysosomes and suppress activation of the metabolic master regulator mechanistic target of rapamycin complex 1 (mTORC1) by amino acids and insulin. Like the TSC complex, G3BP1 deficiency elicits phenotypes related to mTORC1 hyperactivity. In the context of tumors, low G3BP1 levels enhance mTORC1-driven breast cancer cell motility and correlate with adverse outcomes in patients. Furthermore, G3bp1 inhibition in zebrafish disturbs neuronal development and function, leading to white matter heterotopia and neuronal hyperactivity. Thus, G3BPs are not only core components of SGs but also a key element of lysosomal TSC-mTORC1 signaling.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , ADN Helicasas/metabolismo , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Transducción de Señal , Esclerosis Tuberosa/metabolismo , Secuencia de Aminoácidos , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Gránulos Citoplasmáticos/efectos de los fármacos , Gránulos Citoplasmáticos/metabolismo , ADN Helicasas/química , Evolución Molecular , Femenino , Humanos , Insulina/farmacología , Proteínas de Membrana de los Lisosomas/metabolismo , Lisosomas/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fenotipo , Proteínas de Unión a Poli-ADP-Ribosa/química , ARN Helicasas/química , Proteínas con Motivos de Reconocimiento de ARN/química , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Pez Cebra/metabolismo
12.
Front Aging ; 2: 707372, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35822019

RESUMEN

The mechanistic Target of Rapamycin (mTOR) is a growth-related kinase that, in the context of the mTOR complex 1 (mTORC1), touches upon most fundamental cellular processes. Consequently, its activity is a critical determinant for cellular and organismal physiology, while its dysregulation is commonly linked to human aging and age-related disease. Presumably the most important stimulus that regulates mTORC1 activity is nutrient sufficiency, whereby amino acids play a predominant role. In fact, mTORC1 functions as a molecular sensor for amino acids, linking the cellular demand to the nutritional supply. Notably, dietary restriction (DR), a nutritional regimen that has been shown to extend lifespan and improve healthspan in a broad spectrum of organisms, works via limiting nutrient uptake and changes in mTORC1 activity. Furthermore, pharmacological inhibition of mTORC1, using rapamycin or its analogs (rapalogs), can mimic the pro-longevity effects of DR. Conversely, nutritional amino acid overload has been tightly linked to aging and diseases, such as cancer, type 2 diabetes and obesity. Similar effects can also be recapitulated by mutations in upstream mTORC1 regulators, thus establishing a tight connection between mTORC1 signaling and aging. Although the role of growth factor signaling upstream of mTORC1 in aging has been investigated extensively, the involvement of signaling components participating in the nutrient sensing branch is less well understood. In this review, we provide a comprehensive overview of the molecular and cellular mechanisms that signal nutrient availability to mTORC1, and summarize the role that nutrients, nutrient sensors, and other components of the nutrient sensing machinery play in cellular and organismal aging.

13.
Dev Cell ; 42(4): 376-387.e5, 2017 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-28829945

RESUMEN

The molecular mechanisms regulating animal tissue size during development are unclear. This question has been extensively studied in the Drosophila wing disc. Although cell growth is regulated by the kinase TORC1, no readout exists to visualize TORC1 activity in situ in Drosophila. Both the cell cycle and the morphogen Dpp are linked to tissue growth, but whether they regulate TORC1 activity is not known. We develop here an anti-phospho-dRpS6 antibody that detects TORC1 activity in situ. We find, unexpectedly, that TORC1 activity in the wing disc is patchy. This is caused by elevated TORC1 activity at the cell cycle G1/S transition due to CycD/Cdk4 phosphorylating TSC1/2. We find that TORC1 is also activated independently of CycD/Cdk4 when cells with different levels of Dpp signaling or Brinker protein are juxtaposed. We thereby characterize the spatial distribution of TORC1 activity in a developing organ.


Asunto(s)
Ciclina D/metabolismo , Quinasa 4 Dependiente de la Ciclina/metabolismo , Proteínas de Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica , Transducción de Señal , Factores de Transcripción/metabolismo , Alas de Animales/metabolismo , Animales , Ciclo Celular , Ciclina D/genética , Quinasa 4 Dependiente de la Ciclina/genética , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Unión Proteica , Factores de Transcripción/genética , Alas de Animales/embriología
14.
EMBO J ; 35(10): 1058-76, 2016 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-26988032

RESUMEN

Amino acids regulate TOR complex 1 (TORC1) via two counteracting mechanisms, one activating and one inactivating. The presence of amino acids causes TORC1 recruitment to lysosomes where TORC1 is activated by binding Rheb. How the absence of amino acids inactivates TORC1 is less well understood. Amino acid starvation recruits the TSC1/TSC2 complex to the vicinity of TORC1 to inhibit Rheb; however, the upstream mechanisms regulating TSC2 are not known. We identify here the eIF4A-containing eIF4F translation initiation complex as an upstream regulator of TSC2 in response to amino acid withdrawal in Drosophila We find that TORC1 and translation preinitiation complexes bind each other. Cells lacking eIF4F components retain elevated TORC1 activity upon amino acid removal. This effect is specific for eIF4F and not a general consequence of blocked translation. This study identifies specific components of the translation machinery as important mediators of TORC1 inactivation upon amino acid removal.


Asunto(s)
Proteínas de Drosophila/metabolismo , Factor 4A Eucariótico de Iniciación/metabolismo , Factores de Transcripción/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Aminoácidos/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Drosophila , Proteínas de Drosophila/genética , Factor 4A Eucariótico de Iniciación/genética , Células HeLa , Humanos
15.
Nat Commun ; 7: 10662, 2016 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-26868506

RESUMEN

mTORC1 promotes cell growth and is therefore inactivated upon unfavourable growth conditions. Signalling pathways downstream of most cellular stresses converge on TSC1/2, which serves as an integration point that inhibits mTORC1. The TSC1/2 complex was shown to translocate to lysosomes to inactivate mTORC1 in response to two stresses: amino-acid starvation and growth factor removal. Whether other stresses also regulate TSC2 localization is not known. How TSC2 localization responds to combinations of stresses and other stimuli is also unknown. We show that both amino acids and growth factors are required simultaneously to maintain TSC2 cytoplasmic; when one of the two is missing, TSC2 relocalizes to lysosomes. Furthermore, multiple different stresses that inhibit mTORC1 also drive TSC2 lysosomal accumulation. Our findings indicate that lysosomal recruitment of TSC2 is a universal response to stimuli that inactivate mTORC1, and that the presence of any single stress is sufficient to cause TSC2 lysosomal localization.


Asunto(s)
Citoplasma/metabolismo , Lisosomas/metabolismo , Complejos Multiproteicos/metabolismo , Estrés Fisiológico , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Aminoácidos/metabolismo , Animales , Western Blotting , Células COS , Línea Celular , Línea Celular Tumoral , Chlorocebus aethiops , Técnica del Anticuerpo Fluorescente , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Inmunoprecipitación , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Células MCF-7 , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Microscopía Confocal , Células 3T3 NIH , Proteína 2 del Complejo de la Esclerosis Tuberosa
16.
Sci Rep ; 5: 13828, 2015 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-26345496

RESUMEN

mTOR complex 1 (mTORC1) regulates cell growth and metabolism. mTORC1 activity is regulated via integration of positive growth-promoting stimuli and negative stress stimuli. One stress cells confront in physiological and pathophysiological contexts is hyperosmotic stress. The mechanism by which hyperosmotic stress regulates mTORC1 activity is not well understood. We show here that mild hyperosmotic stress induces a rapid and reversible inactivation of mTORC1 via a mechanism involving multiple upstream signaling pathways. We find that hyperosmotic stress causes dynamic changes in TSC2 phosphorylation by upstream kinases, such as Akt, thereby recruiting TSC2 from the cytoplasm to lysosomes where it acts on Rheb, the direct activator of mTORC1. This work puts together a signaling pathway whereby hyperosmotic stress inactivates mTORC1.


Asunto(s)
Complejos Multiproteicos/metabolismo , Presión Osmótica , Estrés Fisiológico , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Supresoras de Tumor/genética , Animales , Línea Celular , Humanos , Lisosomas/metabolismo , Toxinas Marinas , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Modelos Biológicos , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Oxazoles/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Quinasas S6 Ribosómicas/metabolismo , Transducción de Señal , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/metabolismo
17.
Cell ; 156(4): 786-99, 2014 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-24529380

RESUMEN

TOR complex 1 (TORC1) is a potent anabolic regulator of cellular growth and metabolism. When cells have sufficient amino acids, TORC1 is active due to its lysosomal localization mediated via the Rag GTPases. Upon amino acid removal, the Rag GTPases release TORC1, causing it to become cytoplasmic and inactive. We show here that, upon amino acid removal, the Rag GTPases also recruit TSC2 to the lysosome, where it can act on Rheb. Only when both the Rag GTPases and Rheb are inactive is TORC1 fully released from the lysosome. Upon amino acid withdrawal, cells lacking TSC2 fail to completely release TORC1 from the lysosome, fail to completely inactivate TORC1, and fail to adjust physiologically to amino acid starvation. These data suggest that regulation of TSC2 subcellular localization may be a general mechanism to control its activity and place TSC2 in the amino-acid-sensing pathway to TORC1.


Asunto(s)
Aminoácidos/metabolismo , Lisosomas/metabolismo , Complejos Multiproteicos/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Células HeLa , Humanos , Insulina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Proteínas de Unión al GTP Monoméricas/metabolismo , Neuropéptidos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Prenilación , Proteína Homóloga de Ras Enriquecida en el Cerebro , Proteína 2 del Complejo de la Esclerosis Tuberosa
18.
J Biol Chem ; 286(44): 38768-38782, 2011 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-21896491

RESUMEN

The transcription factor NF-κB is a critical regulator of immune responses. To determine how NF-κB builds transcriptional control networks, we need to obtain a topographic map of the factor bound to the genome and correlate it with global gene expression. We used a ChIP cloning technique and identified novel NF-κB target genes in response to virus infection. We discovered that most of the NF-κB-bound genomic sites deviate from the consensus and are located away from conventional promoter regions. Remarkably, we identified a novel abundant NF-κB-binding site residing in specialized Alu-repetitive elements having the potential for long range transcription regulation, thus suggesting that in addition to its known role, NF-κB has a primate-specific function and a role in human evolution. By combining these data with global gene expression profiling of virus-infected cells, we found that most of the sites bound by NF-κB in the human genome do not correlate with changes in gene expression of the nearby genes and they do not appear to function in the context of synthetic promoters. These results demonstrate that repetitive elements interspersed in the human genome function as common target sites for transcription factors and may play an important role in expanding the repertoire of binding sites to engage new genes into regulatory networks.


Asunto(s)
Elementos Alu/genética , FN-kappa B/metabolismo , Animales , Sitios de Unión , Cromatina/química , Inmunoprecipitación de Cromatina , ADN/química , ADN/genética , Genoma , Genoma Humano , Células HeLa , Humanos , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Primates , Unión Proteica , Transcripción Genética
19.
J Virol ; 83(10): 5269-77, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19279104

RESUMEN

A bioinformatic analysis identified two putative NF-kappaB binding sites in the Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) promoter. The ability of p65RelA to interact with the LMP1 promoter was shown by in vitro and in vivo assays. Using an EBV-transformed lymphoblastoid cell line as a reporter system for the activity of the +40/-328 LMP1 promoter region, the functional importance of NF-kappaB and other transcription factor binding sites was demonstrated. p65RelA could also induce LMP1 expression from the EBV genome in Daudi and P3HR1 Burkitt's lymphoma cell lines. Finally, it was shown that p65RelA could cooperate with EBNA2 or the aryl hydrocarbon receptor in the transactivation of the LMP1 promoter. Our study established the importance of NF-kappaB and several cis-acting elements in the regulation of the LMP1 promoter in a latency III environment and highlighted a complex interplay between NF-kappaB and other transcription factors in this process.


Asunto(s)
Herpesvirus Humano 4/genética , Regiones Promotoras Genéticas , Factor de Transcripción ReIA/metabolismo , Activación Transcripcional , Proteínas de la Matriz Viral/genética , Secuencia de Bases , Sitios de Unión , Línea Celular Transformada , Regulación Viral de la Expresión Génica , Herpesvirus Humano 4/metabolismo , Humanos , Datos de Secuencia Molecular , Unión Proteica
20.
FEBS J ; 273(9): 1948-58, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16640558

RESUMEN

Hepatocyte nuclear factor-4 (HNF-4alpha), a member of the nuclear receptor superfamily, binds DNA exclusively as a homodimer. Dimerization controls important aspects of receptor function, such as DNA binding, protein stability, ligand binding and interaction with coactivators. Crystallographic data of the HNF-4alpha ligand-binding domain (LBD) demonstrated that the homodimer interface is composed of residues in helices 7, 9 and 10 with intermolecular salt bridges, hydrogen bonds and hydrophobic interactions contributing to the stability of the interface. To investigate the importance of the proposed ionic interactions for HNF-4alpha dimerization, interactions critical for formation of the LBD homodimer interface were disrupted by introducing point mutations in residues D261N (H7), E269Q (H7), Q307L (H9), D312N (H9) and Q336L (H10). Mutants were analysed for transactivation, coactivator interaction, DNA binding and dimerization. EMSA analysis showed that the mutants are able to bind DNA as dimers and coimmunoprecipitation assays confirmed dimerization in solution. Furthermore, the mutations do not compromise HNF-4alpha activity and are responsive to PPAR-gamma coactivator-1 (PGC-1). Finally, residue R324, located in the H9/H10 loop, which was suspected to be involved in dimer stabilization via an ionic interaction with residue E276, was studied. In contrast to the conservative substitution R324H the mutation R324L abolishes HNF-4alpha transcriptional activity and coactivator recruitment, revealing that the nature of substitution may play an important role in HNF-4alpha function.


Asunto(s)
Factor Nuclear 4 del Hepatocito/química , Factor Nuclear 4 del Hepatocito/genética , Mutación , Secuencia de Aminoácidos , Sustitución de Aminoácidos/genética , Animales , Células COS , Chlorocebus aethiops , ADN/metabolismo , Dimerización , Factor Nuclear 4 del Hepatocito/metabolismo , Factor Nuclear 4 del Hepatocito/fisiología , Humanos , Datos de Secuencia Molecular , Unión Proteica/genética , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA