Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Gen Virol ; 104(3)2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36916406

RESUMEN

Members of the family Sphaerolipoviridae have non-enveloped tailless icosahedral virions with a protein-rich internal lipid membrane. The genome is a linear double-stranded DNA of about 30 kbp with inverted terminal repeats and terminal proteins. The capsid has a pseudo triangulation T=28 dextro symmetry and is built of two major capsid protein types. Spike complexes decorate fivefold vertices. Sphaerolipoviruses have a narrow host range and a lytic life cycle, infecting haloarchaea in the class Halobacteria (phylum Euryarchaeota). This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Sphaerolipoviridae, which is available at ictv.global/report/sphaerolipoviridae.


Asunto(s)
Virus , Virión , Proteínas Virales , Proteínas de la Cápside , ADN , Genoma Viral , Replicación Viral
2.
mBio ; 13(3): e0065122, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35532161

RESUMEN

Although we know the generally appreciated significant roles of microbes in sea ice and polar waters, detailed studies of virus-host systems from such environments have been so far limited by only a few available isolates. Here, we investigated infectivity under various conditions, infection cycles, and genetic diversity of the following Antarctic sea ice bacteriophages: Paraglaciecola Antarctic GD virus 1 (PANV1), Paraglaciecola Antarctic JLT virus 2 (PANV2), Octadecabacter Antarctic BD virus 1 (OANV1), and Octadecabacter Antarctic DB virus 2 (OANV2). The phages infect common sea ice bacteria belonging to the genera Paraglaciecola or Octadecabacter. Although the phages are marine and cold-active, replicating at 0°C to 5°C, they all survived temporal incubations at ≥30°C and remained infectious without any salts or supplemented only with magnesium, suggesting a robust virion assembly maintaining integrity under a wide range of conditions. Host recognition in the cold proved to be effective, and the release of progeny viruses occurred as a result of cell lysis. The analysis of viral genome sequences showed that nearly one-half of the gene products of each virus are unique, highlighting that sea ice harbors unexplored virus diversity. Based on predicted genes typical for tailed double-stranded DNA phages, we suggest placing the four studied viruses in the class Caudoviricetes. Searching against viral sequences from metagenomic assemblies, we revealed that related viruses are not restricted to Antarctica but are also found in distant marine environments. IMPORTANCE Very little is known about sea ice microbes despite the significant role played by sea ice in the global oceans as well as microbial input into biogeochemical cycling. Studies on the sea ice viruses have been typically limited to -omics-based approaches and microscopic examinations of sea ice samples. To date, only four cultivable viruses have been isolated from Antarctic sea ice. Our study of these unique isolates advances the understanding of the genetic diversity of viruses in sea ice environments, their interactions with host microbes, and possible links to other biomes. Such information contributes to more accurate future sea ice biogeochemical models.


Asunto(s)
Bacteriófagos , Cubierta de Hielo , Regiones Antárticas , Variación Genética , Interacciones Microbiota-Huesped , Cubierta de Hielo/microbiología , Agua de Mar/microbiología
3.
PLoS Biol ; 19(11): e3001442, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34752450

RESUMEN

The archaeal tailed viruses (arTV), evolutionarily related to tailed double-stranded DNA (dsDNA) bacteriophages of the class Caudoviricetes, represent the most common isolates infecting halophilic archaea. Only a handful of these viruses have been genomically characterized, limiting our appreciation of their ecological impacts and evolution. Here, we present 37 new genomes of haloarchaeal tailed virus isolates, more than doubling the current number of sequenced arTVs. Analysis of all 63 available complete genomes of arTVs, which we propose to classify into 14 new families and 3 orders, suggests ancient divergence of archaeal and bacterial tailed viruses and points to an extensive sharing of genes involved in DNA metabolism and counterdefense mechanisms, illuminating common strategies of virus-host interactions with tailed bacteriophages. Coupling of the comparative genomics with the host range analysis on a broad panel of haloarchaeal species uncovered 4 distinct groups of viral tail fiber adhesins controlling the host range expansion. The survey of metagenomes using viral hallmark genes suggests that the global architecture of the arTV community is shaped through recurrent transfers between different biomes, including hypersaline, marine, and anoxic environments.


Asunto(s)
Virus de Archaea/clasificación , Virus de Archaea/genética , Evolución Biológica , Variación Genética , Virus de Archaea/metabolismo , ADN/genética , ADN Viral/genética , Genoma Viral , Especificidad del Huésped , Mutación/genética , Filogenia , Células Procariotas/virología , Proteínas Virales/genética
4.
Arch Virol ; 165(11): 2723-2731, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32583077

RESUMEN

Established in 2016, the family Pleolipoviridae comprises globally distributed archaeal viruses that produce pleomorphic particles. Pseudo-spherical enveloped virions of pleolipoviruses are membrane vesicles carrying a nucleic acid cargo. The cargo can be either a single-stranded or double-stranded DNA molecule, making this group the first family introduced in the 10th Report on Virus Taxonomy including both single-stranded and double-stranded DNA viruses. The length of the genomes is approximately 7-17 kilobase pairs, or kilonucleotides in the case of single-stranded molecules. The genomes are circular single-stranded DNA, circular double-stranded DNA, or linear double-stranded DNA molecules. Currently, eight virus species and seven proposed species are classified in three genera: Alphapleolipovirus (five species), Betapleolipovirus (nine species), and Gammapleolipovirus (one species). Here, we summarize the updated taxonomy of the family Pleolipoviridae to reflect recent advances in this field, with the focus on seven newly proposed species in the genus Betapleolipovirus: Betapleolipovirus HHPV3, HHPV4, HRPV9, HRPV10, HRPV11, HRPV12, and SNJ2.


Asunto(s)
Archaea/virología , Virus de Archaea/clasificación , Virus de Archaea/aislamiento & purificación , ADN Viral/genética , Genoma Viral , Virión/genética
5.
Res Microbiol ; 169(9): 500-504, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29772256

RESUMEN

Certain pleomorphic archaeal viruses are highly infectious even at saturated salt. These viruses belong to the genus Betapleolipovirus of the recently described archaeal virus family Pleolipoviridae. Pleolipoviruses comprise single-stranded or double-stranded, circular or linear DNA genomes that share countless homologues among various archaeal genetic elements. Here we describe a new extremely halophilic betapleolipovirus, Halorubrum pleomorphic virus 9 (HRPV9), which has an integrase gene. We also identified new genes encoding minor pleolipoviral structural proteins. The studies on HRPV9 enhance our knowledge on pleolipoviruses, especially their reciprocal relatedness and relation to certain archaeal plasmids, proviruses and membrane vesicles.


Asunto(s)
Virus de Archaea/enzimología , Virus de Archaea/genética , Integrasas/genética , Salinidad , Virus de Archaea/clasificación , Virus de Archaea/fisiología , Virus ADN/genética , ADN Viral/genética , Genoma Viral , Sistemas de Lectura Abierta , Plásmidos , Virión
6.
Genes (Basel) ; 9(3)2018 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-29495629

RESUMEN

Extremely halophilic Archaea are the only known hosts for pleolipoviruses which are pleomorphic non-lytic viruses resembling cellular membrane vesicles. Recently, pleolipoviruses have been acknowledged by the International Committee on Taxonomy of Viruses (ICTV) as the first virus family that contains related viruses with different DNA genomes. Genomic diversity of pleolipoviruses includes single-stranded and double-stranded DNA molecules and their combinations as linear or circular molecules. To date, only eight viruses belong to the family Pleolipoviridae. In order to obtain more information about the diversity of pleolipoviruses, further isolates are needed. Here we describe the characterization of a new halophilic virus isolate, Haloarcula hispanica pleomorphic virus 4 (HHPV4). All pleolipoviruses and related proviruses contain a conserved core of approximately five genes designating this virus family, but the sequence similarity among different isolates is low. We demonstrate that over half of HHPV4 genome is identical to the genome of pleomorphic virus HHPV3. The genomic regions encoding known virion components are identical between the two viruses, but HHPV4 includes unique genetic elements, e.g., a putative integrase gene. The co-evolution of these two viruses demonstrates the presence of high recombination frequency in halophilic microbiota and can provide new insights considering links between viruses, membrane vesicles, and plasmids.

7.
Viruses ; 9(2)2017 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-28218714

RESUMEN

Members of the virus family Sphaerolipoviridae include both archaeal viruses and bacteriophages that possess a tailless icosahedral capsid with an internal membrane. The genera Alpha- and Betasphaerolipovirus comprise viruses that infect halophilic euryarchaea, whereas viruses of thermophilic Thermus bacteria belong to the genus Gammasphaerolipovirus. Both sequence-based and structural clustering of the major capsid proteins and ATPases of sphaerolipoviruses yield three distinct clades corresponding to these three genera. Conserved virion architectural principles observed in sphaerolipoviruses suggest that these viruses belong to the PRD1-adenovirus structural lineage. Here we focus on archaeal alphasphaerolipoviruses and their related putative proviruses. The highest sequence similarities among alphasphaerolipoviruses are observed in the core structural elements of their virions: the two major capsid proteins, the major membrane protein, and a putative packaging ATPase. A recently described tailless icosahedral haloarchaeal virus, Haloarcula californiae icosahedral virus 1 (HCIV-1), has a double-stranded DNA genome and an internal membrane lining the capsid. HCIV-1 shares significant similarities with the other tailless icosahedral internal membrane-containing haloarchaeal viruses of the family Sphaerolipoviridae. The proposal to include a new virus species, Haloarcula virus HCIV1, into the genus Alphasphaerolipovirus was submitted to the International Committee on Taxonomy of Viruses (ICTV) in 2016.


Asunto(s)
Virus de Archaea/clasificación , Virus de Archaea/ultraestructura , Bacteriófagos/clasificación , Bacteriófagos/ultraestructura , Filogenia , Virión/ultraestructura , Adenosina Trifosfatasas/genética , Archaea/virología , Virus de Archaea/genética , Bacteriófagos/genética , Proteínas de la Cápside/genética , Análisis de Secuencia de ADN , Thermus/virología
8.
Virology ; 499: 40-51, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27632564

RESUMEN

Hypersaline environments that are subject to salinity changes are particularly rich in viruses. Here we report a newly isolated archaeal halovirus, Haloarcula hispanica pleomorphic virus 3 (HHPV3). Its reproduction significantly retards host growth and decreases cell viability without causing lysis. HHPV3 particles require a minimum of 3M NaCl for stability and maintain high infectivity even in saturated salt. Notably, virions are irreversibly inactivated at ~1.5M NaCl in neutral pH, but tolerate this salinity at alkaline pH. The HHPV3 virion is a pleomorphic membrane vesicle containing two major protein species and lipids acquired nonselectively from the host membrane. The circular double-stranded DNA genome contains a conserved gene block characteristic of pleolipoviruses. We propose that HHPV3 is a member of the Betapleolipovirus genus (family Pleolipoviridae). Our findings add insights into the diversity observed among the pleolipoviruses found in hypersaline environments.


Asunto(s)
Virus de Archaea/fisiología , Haloarcula/virología , Salinidad , Virión , Virus de Archaea/aislamiento & purificación , Virus de Archaea/ultraestructura , Orden Génico , Genoma Viral , Especificidad del Huésped , Concentración de Iones de Hidrógeno , Iones , Sistemas de Lectura Abierta , Virión/aislamiento & purificación , Virión/fisiología , Virión/ultraestructura , Replicación Viral
9.
mBio ; 7(4)2016 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-27435460

RESUMEN

UNLABELLED: Despite their high genomic diversity, all known viruses are structurally constrained to a limited number of virion morphotypes. One morphotype of viruses infecting bacteria, archaea, and eukaryotes is the tailless icosahedral morphotype with an internal membrane. Although it is considered an abundant morphotype in extreme environments, only seven such archaeal viruses are known. Here, we introduce Haloarcula californiae icosahedral virus 1 (HCIV-1), a halophilic euryarchaeal virus originating from salt crystals. HCIV-1 also retains its infectivity under low-salinity conditions, showing that it is able to adapt to environmental changes. The release of progeny virions resulting from cell lysis was evidenced by reduced cellular oxygen consumption, leakage of intracellular ATP, and binding of an indicator ion to ruptured cell membranes. The virion contains at least 12 different protein species, lipids selectively acquired from the host cell membrane, and a 31,314-bp-long linear double-stranded DNA (dsDNA). The overall genome organization and sequence show high similarity to the genomes of archaeal viruses in the Sphaerolipoviridae family. Phylogenetic analysis based on the major conserved components needed for virion assembly-the major capsid proteins and the packaging ATPase-placed HCIV-1 along with the alphasphaerolipoviruses in a distinct, well-supported clade. On the basis of its virion morphology and sequence similarities, most notably, those of its core virion components, we propose that HCIV-1 is a member of the PRD1-adenovirus structure-based lineage together with other sphaerolipoviruses. This addition to the lineage reinforces the notion of the ancient evolutionary links observed between the viruses and further highlights the limits of the choices found in nature for formation of a virion. IMPORTANCE: Under conditions of extreme salinity, the majority of the organisms present are archaea, which encounter substantial selective pressure, being constantly attacked by viruses. Regardless of the enormous viral sequence diversity, all known viruses can be clustered into a few structure-based viral lineages based on their core virion components. Our description of a new halophilic virus-host system adds significant insights into the largely unstudied field of archaeal viruses and, in general, of life under extreme conditions. Comprehensive molecular characterization of HCIV-1 shows that this icosahedral internal membrane-containing virus exhibits conserved elements responsible for virion organization. This places the virus neatly in the PRD1-adenovirus structure-based lineage. HCIV-1 further highlights the limited diversity of virus morphotypes despite the astronomical number of viruses in the biosphere. The observed high conservation in the core virion elements should be considered in addressing such fundamental issues as the origin and evolution of viruses and their interplay with their hosts.


Asunto(s)
Virus ADN/clasificación , Virus ADN/aislamiento & purificación , Haloarcula/virología , Cápside/ultraestructura , ADN/genética , Virus ADN/genética , Virus ADN/fisiología , ADN Viral/genética , Ambientes Extremos , Orden Génico , Lípidos/análisis , Filogenia , Análisis de Secuencia de ADN , Homología de Secuencia , Cloruro de Sodio/metabolismo , Sintenía , Proteínas Virales/análisis , Liberación del Virus
10.
Viruses ; 7(4): 1902-26, 2015 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-25866903

RESUMEN

Hypersaline environments around the world are dominated by archaea and their viruses. To date, very little is known about these viruses and their interaction with the host strains when compared to bacterial and eukaryotic viruses. We performed the first culture-dependent temporal screening of haloarchaeal viruses and their hosts in the saltern of Samut Sakhon, Thailand, during two subsequent years (2009, 2010). Altogether we obtained 36 haloarchaeal virus isolates and 36 archaeal strains, significantly increasing the number of known archaeal virus isolates. Interestingly, the morphological distribution of our temporal isolates (head-tailed, pleomorphic, and icosahedral membrane-containing viruses) was similar to the outcome of our previous spatial survey supporting the observations of a global resemblance of halophilic microorganisms and their viruses. Myoviruses represented the most abundant virus morphotype with strikingly broad host ranges. The other viral morphotypes (siphoviruses, as well as pleomorphic and icosahedral internal membrane-containing viruses) were more host-specific. We also identified a group of Halorubrum strains highly susceptible to numerous different viruses (up to 26). This high virus sensitivity, the abundance of broad host range viruses, and the maintenance of infectivity over a period of one year suggest constant interplay of halophilic microorganisms and their viruses within an extreme environment.


Asunto(s)
Virus de Archaea/fisiología , Microbiología Ambiental , Halorubrum/virología , Replicación Viral , Virus de Archaea/genética , Virus de Archaea/aislamiento & purificación , Virus de Archaea/ultraestructura , Análisis por Conglomerados , ADN Viral/química , ADN Viral/genética , Halorubrum/aislamiento & purificación , Especificidad del Huésped , Datos de Secuencia Molecular , Filogenia , Análisis de Secuencia de ADN , Homología de Secuencia , Tailandia , Virión/ultraestructura , Cultivo de Virus
11.
Trends Microbiol ; 22(6): 334-44, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24647075

RESUMEN

Isolated archaeal viruses comprise only a few percent of all known prokaryotic viruses. Thus, the study of viruses infecting archaea is still in its early stages. Here we summarize the most recent discoveries of archaeal viruses utilizing a virion-centered view. We describe the known archaeal virion morphotypes and compare them to the bacterial counterparts, if such exist. Viruses infecting archaea are morphologically diverse and present some unique morphotypes. Although limited in isolate number, archaeal viruses reveal new insights into the viral world, such as deep evolutionary relationships between viruses that infect hosts from all three domains of life.


Asunto(s)
Archaea/virología , Virus de Archaea/fisiología , Bacteriófagos/fisiología , Virus de Archaea/aislamiento & purificación , Bacteriófagos/aislamiento & purificación , Virión/aislamiento & purificación , Virión/fisiología , Virión/ultraestructura
12.
Chem Commun (Camb) ; 49(39): 4208-10, 2013 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-23292434

RESUMEN

Biomimetic architectural assembly of clay nanotube shells on yeast cells was demonstrated producing viable artificial hybrid inorganic-cellular structures (armoured cells). These modified cells were preserved for one generation resulting in the intact second generation of cells with delayed germination.


Asunto(s)
Silicatos de Aluminio/química , Materiales Biomiméticos/química , Nanotubos/química , Materiales Biomiméticos/metabolismo , Arcilla , Electrólitos/química , Fluoresceína-5-Isotiocianato/química , Poliaminas/química , Poliestirenos/química , Saccharomyces cerevisiae/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...