Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Vaccines (Basel) ; 12(9)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39340009

RESUMEN

The envelope (env) protein of SARS-CoV-2, a pivotal component of the viral architecture, plays a multifaceted role in viral assembly, replication, pathogenesis, and ion channel activity. These features make it a significant target for understanding virus-host interactions and developing vaccines to combat COVID-19. Recent structural studies provide valuable insights into the conformational dynamics and membrane topology of the SARS-CoV-2 env protein, shedding light on its functional mechanisms. The strong homology and highly conserved structure of the SARS-CoV-2 env protein shape its immunogenicity and functional characteristics. This study examines the ability of the recombinant SARS-CoV-2 env protein to stimulate an immune response. In this study, recombinant envelope proteins were produced using the baculovirus expression system, and their potential efficacy was evaluated in both in vivo and in vitro models. Our results reveal that the env protein of SARS-CoV-2 stimulates humoral and cellular responses and highlight its potential as a promising vaccine candidate for combating the ongoing pandemic.

2.
Virus Genes ; 60(5): 549-558, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38922563

RESUMEN

Invertebrate iridescent virus 6 (IIV6) is a nucleocytoplasmic insect virus and a member of the family Iridoviridae. The IIV6 genome consists of 212,482 bp of linear dsDNA with 215 non-overlapping and putative protein-encoding ORFs. The IIV6 118L ORF is conserved in all sequenced members of the Iridoviridae and encodes a 515 amino acid protein with three predicted transmembrane domains and several N-glycosylation/N-myristoylation sites. In this study, we characterized the 118L ORF by both deleting it from the viral genome and silencing its expression with dsRNA in infected insect cells. The homologous recombination method was used to replace 118L ORF with the green fluorescent protein (gfp) gene. Virus mutants in which the 118L gene sequence had been replaced with gfp were identified by fluorescence microscopy but could not be propagated separately from the wild-type virus in insect cells. Unsuccessful attempts to isolate the mutant virus with the 118L gene deletion suggested that the protein is essential for virus replication. To support this result, we used dsRNA to target the 118L gene and showed that treatment resulted in a 99% reduction in virus titer. Subsequently, we demonstrated that 118L-specific antibodies produced against the 118L protein expressed in the baculovirus vector system were able to neutralize the virus infection. All these results indicate that 118L is a viral envelope protein that is required for the initiation of virus replication.


Asunto(s)
Proteínas del Envoltorio Viral , Animales , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Sistemas de Lectura Abierta/genética , Replicación Viral/genética , Iridovirus/genética , Línea Celular , Células Sf9 , Genoma Viral/genética , Spodoptera/virología
3.
Virus Genes ; 60(3): 287-294, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38704458

RESUMEN

Amsacta moorei entomopoxvirus (AMEV) is a poxvirus that can only infect insects. This virus is an attractive research material because it is similar to smallpox virus. AMEV is one of many viruses that encode protein kinases that drive the host's cellular mechanisms, modifying immune responses to it, and regulating viral protein activity. We report here the functional characterization of a serine/threonine (Ser/Thr) protein kinase (PK) gene (ORF AMV197) of AMEV. Expression of the AMV197 gene in baculovirus expression system yielded a ~ 35.5 kDa protein. PK activity of expressed AMV197 was shown by standard PK assay. Substrate profiling of AMV197 protein by peptide microarray indicated that the expressed protein phosphorylated 81 of 624 substrates which belong to 28 families of PK substrates. While the hypothetical AMV197 protein phosphorylates Ser/Thr only, we demonstrated that the expressed PK also phosphorylates probes with tyrosine residues on the array which is a rare property among PKs. Pull-down assay of the AMV197 protein with the subcellular protein fractionations of Ld652 cells showed that it is using two cellular proteins (18 and 42 kDa) as novel putative substrates. Our results suggest that AMEV can regulate cellular mechanisms by phosphorylating cellular proteins through AMV197 PK. However, further experiments are needed to identify the exact role of this PK in the replication of AMEV.


Asunto(s)
Entomopoxvirinae , Proteínas Virales , Proteínas Virales/genética , Proteínas Virales/metabolismo , Entomopoxvirinae/genética , Entomopoxvirinae/metabolismo , Fosforilación , Animales , Especificidad por Sustrato , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Línea Celular
4.
Vet Parasitol ; 328: 110155, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38452531

RESUMEN

The poultry red mite, Dermanyssus gallinae (Arachnida: Dermanyssidae) is a pest that causes significant economic loss in laying hens for which control methods are limited. In this study, the effects of 20 indigenous fungal strains on poultry red mites in chicken farms were investigated. All experiments were conducted under laboratory condition at 28 ± 1 °C and 80 ± 5% humidity. A screening test showed that Metharizium flavoviride strain As-2 and Beauveria bassiana strain Pa4 had the greatest measured effect on D. gallinae at 1 × 107 conidia/ml 7 days after application. In a subsequent does-response experiment, these strains also caused 92.7% mortality at 1 × 109 conidia/ml within the same period. The LC50 of these strains was 5.5 × 104 (95% CI: 0.8-37.5) conidia/ml for As-2 and 3.2 × 104 (95% CI: 0.4-26.0) conidia/ml for Pa4, and their LT50 were 1.94 and 1.57 days, respectively. The commercial Metarhizium anisopliae bioinsecticide Bio-Storm 1.15% WP, used as a comparator, had LC50 and LT50 1 × 105 (95% CI: 0.1-7.9) conidia/ml and 3.03 (95% CI: 2.4-3.8) days, respectively. It is suggested that mycoacaricides could be developed using the best two fungal strains found in this study (As-2 and Pa4), providing potential for biological control of poultry red mites.


Asunto(s)
Pollos , Infestaciones por Ácaros , Ácaros , Control Biológico de Vectores , Enfermedades de las Aves de Corral , Animales , Control Biológico de Vectores/métodos , Ácaros/microbiología , Enfermedades de las Aves de Corral/parasitología , Enfermedades de las Aves de Corral/prevención & control , Enfermedades de las Aves de Corral/microbiología , Pollos/parasitología , Infestaciones por Ácaros/veterinaria , Infestaciones por Ácaros/prevención & control , Infestaciones por Ácaros/parasitología , Beauveria/fisiología , Femenino
5.
Int Microbiol ; 27(2): 631-643, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37597112

RESUMEN

As an alternative to chemical insecticides, gut bacteria of insects could be used to control insect pests. In this study, bacteria associated with Tuta absoluta, an invasive species that has developed resistance to chemical insecticides, were isolated, and their potential for pest control was investigated. We isolated 13 bacteria from larvae of the pest and identified the isolates on the basis of their morphological, physiological, biochemical, and molecular characteristics as Bacillus thuringiensis (Ta1-8), Staphylococcus petrasii (Ta9), Citrobacter freundii (Ta10), Chishuiella changwenlii (Ta11), Enterococcus casseliflavus (Ta12), and Pseudomonas tremae (Ta13). A laboratory screening test at 109 cfu/ml showed that B. thuringiensis (Bt) isolates caused more than 90% mortality after 3 days. Among the isolates, Bt-Ta1 showed the highest mortality in a short time. The LC50 and LC90 values for Bt-Ta1 were estimated to be 1.2 × 106 and 2 × 109 cfu/ml, respectively. Detailed characterization of Bt-Ta1 revealed that it is one of the serotypes effective on lepidopterans and contains the genes cry1Aa, cry2Aa, and vip3Aa, which encode lepidopteran toxic proteins. Bt-Ta1 isolate has been shown to have the potential to be used in the integrated management of Tuta absoluta.


Asunto(s)
Bacillus thuringiensis , Insecticidas , Lepidópteros , Animales , Insecticidas/farmacología , Especies Introducidas , Larva
6.
J Invertebr Pathol ; 197: 107885, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36640993

RESUMEN

Invertebrate iridescent virus 6 (IIV6) is a nucleocytoplasmic virus with a ∼212 kb linear dsDNA genome that encodes 215 putative open reading frames (ORFs). Proteomic analysis has revealed that the IIV6 virion consists of 54 virally encoded proteins. Interactions among the structural proteins were investigated using the yeast two-hybrid system, revealing that the protein of 415R ORF interacts reciprocally with the potential envelope protein 118L and the major capsid protein 274L. This result suggests that 415R might be a matrix protein that plays a role as a bridge between the capsid and the envelope proteins. To elucidate the function of 415R protein, we determined the localization of 415R in IIV6 structure and analyzed the properties of 415R-silenced IIV6. Specific antibodies produced against 415R protein were used to determine the location of the 415R protein in the virion structure. Both western blot hybridization and immunogold electron microscopy analyses showed that the 415R protein was found in virions treated with Triton X-100, which degrades the viral envelope. The 415R gene was silenced by the RNA interference (RNAi) technique. We used gene-specific dsRNA's to target 415R and showed that this treatment resulted in a significant drop in virus titer. Silencing 415R with dsRNA also reduced the transcription levels of other viral genes. These results provide important data on the role and location of IIV6 415R protein in the virion structure. Additionally, these results may also shed light on the identification of the homologs of 415R among the vertebrate iridoviruses.


Asunto(s)
Iridovirus , Animales , Iridovirus/genética , Iridovirus/química , Proteínas Virales/genética , Proteínas Virales/metabolismo , Proteómica , Genes Virales , Proteínas de la Cápside/genética , Virión/metabolismo
7.
Curr Genomics ; 24(3): 146-154, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38178988

RESUMEN

Background: The gypsy moth (Lymantria dispar L., Lepidoptera: Erebidae) is a worldwide pest of trees and forests. Lymantria dispar nucleopolyhedrovirus (LdMNPV) belongs to the Baculoviridae family and is an insect virus specific to gypsy moth larvae. In this study, we describe the complete genome sequences of three geographically diverse isolates, H2 (China), J2 (Japan), and T3 (Turkey), of Lymantria dispar multiple nucleopolyhedrovirus (LdMNPV). Methods: The genomes of isolates H2, J2, and T3 were subjected to shotgun pyrosequencing using Roche 454 FLX and assembled using Roche GS De Novo Assembler. Comparative analysis of all isolates was performed using bioinformatics methods. Results: The genomes of LdMNPV-H2, J2, and T3 were 164,746, 162,249, and 162,614 bp in size, had GC content of 57.25%, 57.30%, and 57.46%, and contained 162, 165, and 164 putative open reading frames (ORFs ≥ 150 nt), respectively. Comparison between the reference genome LdMNPV-5/6 (AF081810) and the genomes of LdMNPV-H2, J2, and T3 revealed differences in gene content. Compared with LdMNPV-5/6, ORF5, 6, 8, 10, 31, and 67 were absent in LdMNPV-H2, ORF5, 13, and 66 were absent in LdMNPV-J2, and ORF10, 13, 31, and 67 were absent in LdMNPV-T3. In addition, the gene encoding the mucin-like protein (ORF4) was split into two parts in isolates H2 and T3 and designated ORF4a and ORF4b. Phylogenetic analysis grouped isolates H2 and J2 in a different cluster than isolate T3, which is more closely related to the Turkish and Polish isolates. In addition, H2 was found to be closely related to a South Korean LdMNPV isolate. Conclusion: This study provided a more detailed overview of the relationships between different geographic LdMNPV isolates. The results showed remarkable differences between groups at the genome level.

8.
J Invertebr Pathol ; 177: 107496, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33127354

RESUMEN

Invertebrate iridescent virus 6 (IIV6) is the type species of the Iridovirus genus in the Betairidovirinae subfamily of the Iridoviridae family. Transcription of the 215 predicted IIV6 genes is temporally regulated, dividing the genes into three kinetic classes: immediate-early (IE), delayed-early (DE), and late (L). So far, the transcriptional class has been determined for a selection of virion protein genes and only for three genes the potential promoter regions have been analyzed in detail. In this study, we investigated the transcriptional class of all IIV6 genes that had not been classified until now. RT-PCR analysis of total RNA isolated from virus-infected insect cells in the presence or absence of protein and DNA synthesis inhibitors, placed 113, 23 and 22 of the newly analyzed viral ORFs into the IE, DE and L gene classes, respectively. Afterwards, in silico analysis was performed to the upstream regions (200 bp) of all viral ORFs using the MEME Suite Software. The AA(A/T)(T/A)TG(A/G)A and (T/A/C)(T/G/C)T(T/A)ATGG motifs were identified in the upstream region of IE and DE genes, respectively. These motifs were validated by luciferase reporter assays as crucial sequences for promoter activity. For the L genes two conserved motifs were identified for all analyzed genes: (T/G)(C/T)(A/C)A(T/G/C)(T/C)T(T/C) and (C/G/T)(G/A/C)(T/A)(T/G) (G/T)(T/C). However, the presence of these two motifs did not influence promoter activity. Conversely, the presence of these two sequences upstream of the reporter decreased its expression. Single nucleotide mutations in the highly conserved nucleotides at the end of the second motif (TTGT) showed that this motif acted as a repressor sequence for late genes in the IIV6 genome. Next, upstream sequences of IIV6 L genes from which we removed this second motif in silico, were re-analyzed for the presence of potential conserved promoter sequences. Two additional motifs were identified in this way for L genes: (T/A)(A/T)(A/T/G)(A/T)(T/C)(A/G)(A/C)(A/C) and (C/G)(T/C)(T/A/C)C(A/T)(A/T)T(T/G) (T/G)(T/G/A). Independent mutations in either motif caused a severe decrease in luciferase expression. Information on temporal classes and upstream regulatory sequences will contribute to our understanding of the transcriptional mechanisms in IIV6.


Asunto(s)
Genoma Viral , Iridovirus/química , Transcripción Viral
9.
PLoS One ; 15(6): e0234635, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32530959

RESUMEN

The entire genome of Helicoverpa armigera single nucleopolyhedrovirus (HearNPV-TR) was sequenced, and compared to genomes of other existing isolates. HearNPV-TR genome is 130.691 base pairs with a 38.9% G+C content and has 137 open reading frames (ORFs) of ≥ 150 nucleotides. Five homologous repeated sequences (hrs) and two baculovirus repeated ORFs (bro-a and bro-b) were identified. Phylogenetic analysis showed that HearNPV-TR is closer to HaSNPV-C1, HaSNPV-G4, HaSNPV-AU and HasNPV. However, there are significant differences in hr3, hr5 regions and in bro-a gene. Pairwise Kimura-2 parameter analysis of 38 core genes sequences of HearNPV-TR and other Helicoverpa NPVs showed that the genetic distances for these sequences were below 0.015 substitutions/site. Genomic differences as revealed by restriction profiles indicated that hr3, hr5 regions and bro-a gene may play a role in the virulence of HearNPV-TR.


Asunto(s)
Genoma Viral , Mariposas Nocturnas/virología , Nucleopoliedrovirus/genética , Nucleopoliedrovirus/aislamiento & purificación , Análisis de Secuencia de ADN , Animales , ADN Circular/genética , Genes de Insecto , Sistemas de Lectura Abierta/genética , Filogenia , Mapeo Restrictivo , Turquía
10.
Genomics ; 112(1): 459-466, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-30898611

RESUMEN

The fall webworm (Hyphantria cunea) impacts a wide variety of crops and cultivated broadleaf plant species. The pest is native to North America, was introduced to Europe and has since spread further as far as central Asia. Despite several attempts to control its distribution, the pest continues to spread causing damage all over the world. A naturally occurring baculovirus, Hyphantria cunea granulovirus (HycuGV-Hc1), isolated from the larvae of H. cunea in Turkey appears to have a potential as microbial control agent against this pest. In this report we describe the complete genome sequence and organization of the granulovirus isolate (HycuGV-Hc1) that infects the larval stages and compare it to other baculovirus genomes. The HycuGV-Hc1 genome is a circular double-stranded DNA of 114,825 bp in size with a nucleotide distribution of 39.3% G + C. Bioinformatics analysis predicted 132 putative open reading frames of (ORFs) ≥ 150 nucleotides. There are 24 ORFs with unknown function. Seven homologous repeated regions (hrs) and two bro genes (bro-1 and bro-2) were identified in the genome. Comparison to other baculovirus genomes, HycuGV-Hc1 revealed some differences in gene content and organization. Gene parity plots and phylogenetics confirmed that HycuGV-Hc1 is a Betabaculovirus and is closely related to Plutella xylostella granulovirus. This study expands our knowledge on the genetic variation of HycuGV isolates and provides further novel knowledge on the nature of granuloviruses.


Asunto(s)
Genoma Viral , Granulovirus/genética , Animales , Composición de Base , ADN Viral/química , Genes Virales , Granulovirus/clasificación , Mariposas Nocturnas/virología , Sistemas de Lectura Abierta , Filogenia , Análisis de Secuencia de ADN , Turquía
11.
Turk J Biol ; 43(5): 340-348, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31768105

RESUMEN

This study reports a new Helicoverpa armigera nucleopolyhedrovirus (NPV) isolated from Heliothis peltigera (Denis & Schiffermuller), collected in the vicinity of Adana, Turkey. Infection was confirmed by tissue polymerase chain reaction and sequence analysis. Results showed that dead H. peltigera larvae contain Helicoverpa armigera nucleopolyhedrovirus. Thus, the isolate was named as HearNPV-TR. Microscopy studies indicated that occlusion bodies were 0.73 to 1.66 µm in diameter. The nucleocapsids are approximately 184 × 41 nm in size. The genome of HearNPV-TR was digested with KpnI and XhoI enzymes and calculated as 130.5 kb. Phylogenetic analysis showed that HearNPV-TR has close relation with the H. armigera SNPV-1073 China isolate. The Kimura analysis confirmed that the isolate is a variant of H. armigera NPV. Bioassays were performed using six different concentrations (1 × 103 to 1 × 108 occlusion bodies (OBs)/mL) on 2nd instar larvae of H. peltigera, H. armigera, Heliothis viriplaca, Heliothis nubigera. LC50 values were calculated to be 9.5 × 103, 1.9 × 104, 8.6 × 104 and 9.2 × 104 OBs/mL within 14 days, respectively. Results showed that it is a promising biocontrol agent against Heliothinae species.

12.
J Microencapsul ; 36(1): 1-9, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30836029

RESUMEN

In this study, microencapsulation by spray drying was performed to protect spores and crystals of an indigenous isolate of Bacillus thuringiensis Se13 from environmental stress. The effects of wall material, inlet temperature, and outlet temperature on microencapsulation of Bt-Se13 were investigated using Taguchi's orthogonal array. The most suitable wall material determined as maltodextrin DE10. The optimum inlet and outlet temperatures of spray drier were determined as 160 °C and 70 °C, respectively. The number of viable spores, mean particle size, wetting time, percentage of suspensibility and moisture content of the product produced under optimum conditions were determined as 8.1 × 1011 cfu g-1, 13.462 µm, 25.22 s, 77.66% and 7.29%, respectively. As a result of efficiency studies on Spodoptera exigua in the laboratory conditions, the LC50 was determined as 1.6 × 104 cfu mL-1. Microencapsulated Bt-Se13 based bio-pesticide may be registered for the control of S. exigua and can be tested against other lepidopterans which share the same environment.


Asunto(s)
Bacillus thuringiensis/citología , Excipientes/química , Polisacáridos/química , Bacillus thuringiensis/química , Células Inmovilizadas/química , Células Inmovilizadas/citología , Desecación , Composición de Medicamentos , Calor , Preservación Biológica , Esporas Bacterianas/química , Esporas Bacterianas/citología
13.
Arch Virol ; 164(3): 657-665, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30498963

RESUMEN

The genome of Chilo iridescent virus (CIV) has two open reading frames (ORFs) with matrix metalloprotease (MMP) domains. The protein encoded by ORF 136R contains 178 amino acids with over 40% amino acid sequence identity to hypothetical metalloproteases of other viruses, and the protein 165R contains 264 amino acids with over 40% amino acid sequence identity to metalloproteases of a large group of organisms, primarily including a variety of Drosophila species. These proteins possess conserved zinc-binding motifs in their catalytic domains. In this study, we focused on the functional analysis of these ORFs. They were cloned into the Autographa californica multiple nucleopolyhedrovirus (AcMNPV) Bac-to-Bac baculovirus expression-vector system, expressed in insect Sf9 cells with an N-terminal His tag, and purified to homogeneity at 72 hours postinfection using Ni-NTA affinity chromatography. Western blot analyses of purified 136R and 165R proteins with histidine tags resulted in 24- and 34-kDa protein bands, respectively. Biochemical assays with the purified proteins, performed using azocoll and azocasein as substrates, showed that both proteins have protease activity. The enzymatic activities were inhibited by the metalloprotease inhibitor EDTA. Effects of these proteins were also investigated on Galleria mellonella larvae. Insecticidal activity was tested by injecting the larvae with the virus derived from the AcMNPV bacmid carrying 136R or 165R ORFs. The results showed that the baculoviruses harbouring the iridoviral metalloproteases caused early death of the larvae compared to control group. These data suggest that the CIV 136R and 165R ORFs encode functional metalloproteases. This study expands our knowledge about iridoviruses, describes the characterization of CIV matrix metalloproteinases, and might ultimately contribute to the use of this virus as a research tool.


Asunto(s)
Iridovirus/enzimología , Metaloproteasas/metabolismo , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Animales , Genoma Viral , Iridovirus/química , Iridovirus/genética , Lepidópteros , Metaloproteasas/química , Metaloproteasas/genética , Metaloproteasas/aislamiento & purificación , Sistemas de Lectura Abierta , Homología de Secuencia de Aminoácido , Células Sf9 , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/aislamiento & purificación
14.
Virus Genes ; 54(5): 706-718, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30155661

RESUMEN

The lackey moth, Malacosoma neustria (Linnaeus, 1758), a worldwide pest, causes extensive economic losses particularly on hazelnut, plum, oak, poplar, and willow trees. A baculovirus, Malacosoma neustria nucleopolyhedrovirus (ManeNPV-T2), has been isolated from the larvae collected in Turkey and appears to have a potential as a microbial control agent. In this study, we describe the complete genome sequence of ManeNPV-T2 and compare it to other sequenced baculovirus genomes. The ManeNPV-T2 genome is a circular double-stranded DNA molecule of 130,202 bp, has 38.2% G + C, and is predicted to contain 131 putative open reading frames (ORFs) each with a coding capacity of more then 50 amino acids. There are 27 ORFs with unknown function of which 6 are unique to ManeNPV-T2. Eleven homologous regions (hrs) and two bro genes (bro-a and bro-b) were identified in the genome. There are two homologues of chaB and nicotinamide riboside kinase-1 genes, separated from themselves with a few nucleotides. Additionally, ac145, thought to be per os infectivity factor (pif) gene, is also found as two homologues. All 38 core genes are found in the ManeNPV-T2 genome. The phylogenetic tree of ManeNPV-T2 in relation to 50 other baculoviruses whose genomes have been completely sequenced showed ManeNPV-T2 to be closely related to the group II NPVs. This study expands our knowledge on baculoviruses, describes the characterization ManeNPV, and ultimately contributes to the registration of this virus as a microbial pesticide.


Asunto(s)
ADN Viral , Genoma Viral , Mariposas Nocturnas/virología , Nucleopoliedrovirus/genética , Animales , Agentes de Control Biológico , Nucleopoliedrovirus/aislamiento & purificación , Filogenia , Análisis de Secuencia de ADN , Turquía
15.
Microb Pathog ; 121: 350-358, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29753873

RESUMEN

In order to find an effective and environmentally friendly biocontrol agent against Spodoptera exigua, we isolated and identified a total of 15 different bacterial species belonging to phyla Firmicutes, Proteobacteria and Bacteroidetes. According to the phenotypic, genotypic and phylogenetic properties, bacterial isolates were identified as Bacillus cereus (Se1), Lysinibacillus macroides (Se2), Pseudomonas geniculata (Se3), Paenibacillus tylopili (Se4), Staphylococcus succinus (Se5), Acinetobacter soli (Se6), Chryseobacterium indologenes (Se7), Bacillus toyonensis (Se8), Serratia marcescens (Se9), Paenibacillus amylolyticus (Se10), Paenibacillus xylanexedens (Se11), Enterobacter ludwigii (Se12), Bacillus thuringiensis (Se13), Bacillus thuringiensis (Se14) and Lysinibacillus fusiformis (Se15). Screening of bacterial isolates for insecticidal potential was conducted at 109 cfu ml-1 bacterial concentration. The highest larvacidal effect was obtained with Bacillus thuringiensis Se13 with 100% mortality. In the dose response experiments performed with this bacterium, the median lethal concentration (LC50) was estimated as 7.5 × 104 cfu ml-1 against 3rd instar larvae of the pest at 10 days post treatment. The median lethal time (LT50) value of 109 cfu ml-1 bacterial concentration was also determined as 1.59 days. Phase-contrast and scanning electron microscope studies exhibited that B. thuringiensis Se13 produced different shape and size crystals (bipyramidal, cubic and spherical). Phylogenetic analysis of cry1 and cry2 gene content of this isolate displayed that B. thuringiensis Se13 had 99% homology with cry1Ac and cry2Aa, respectively. Finding from this study indicated that B. thuringiensis Se13 appears to be a promising microbial control agent for use against S. exigua.


Asunto(s)
Bacterias/clasificación , Biodiversidad , Microbioma Gastrointestinal , Control Biológico de Vectores , Spodoptera/microbiología , Animales , Bacillaceae/aislamiento & purificación , Bacillus cereus/aislamiento & purificación , Bacillus thuringiensis/aislamiento & purificación , Bacterias/aislamiento & purificación , Proteínas Bacterianas/genética , Bacteroidetes/aislamiento & purificación , Agentes de Control Biológico , Firmicutes/aislamiento & purificación , Interacciones Huésped-Patógeno , Larva/efectos de los fármacos , Larva/microbiología , Paenibacillus/aislamiento & purificación , Filogenia , Proteobacteria/aislamiento & purificación , Pseudomonas/aislamiento & purificación
16.
J Gen Virol ; 99(6): 851-859, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29708485

RESUMEN

Chilo iridescent virus (CIV), officially named invertebrate iridescent virus 6 (IIV6), is a nucleocytoplasmic virus with a ~212-kb linear dsDNA genome that encodes 215 putative open reading frames (ORFs). Proteomic analysis has revealed that the CIV virion consists of 54 virally encoded proteins. In this study, we identified the interactions between the structural proteins using the yeast two-hybrid system. We cloned 47 structural genes into both bait and prey vectors, and then analysed the interactions in Saccharomyces cerevisiae strain AH109. A total of 159 protein-protein interactions were detected between the CIV structural proteins. Only ORF 179R showed a self-association. Four structural proteins that have homologues in iridoviruses (118L, 142R, 274L and 295L) showed indirect interactions with each other. Seven proteins (138R, 142R, 361L, 378R, 395R, 415R and 453R) interacted with the major capsid protein 274L. The putative membrane protein 118L, a homologue of the frog virus 3/Ranagrylio virus 53R protein, showed direct interactions with nine other proteins (117L, 229L, 307L, 355R, 366R, 374R, 378R, 415R and 422L). The interaction between 118L and 415R was confirmed by a GST pull-down assay. These data indicate that 415R is a potential matrix protein connecting the envelope protein 118L with the major capsid protein 274L.


Asunto(s)
Iridovirus/química , Mapas de Interacción de Proteínas , Proteínas Virales/química , Genoma Viral , Iridovirus/genética , Sistemas de Lectura Abierta , Proteómica , Saccharomyces cerevisiae/genética , Técnicas del Sistema de Dos Híbridos , Proteínas Virales/genética
17.
Virus Genes ; 54(3): 438-445, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29666979

RESUMEN

Amsacta moorei entomopoxvirus (AMEV) infects certain lepidopteran and orthopteran insects and is the most studied member of the genus Betaentomopoxvirus. It has been considered as a potential vector for gene therapy, a vector to express exogenous proteins and a biological control agent. One of its open reading frames, amv248, encodes a putative glycosyltransferase and is the only known attachment protein conserved in AMEV and chordopoxviruses. The ORF was successfully expressed and the protein was shown to bind soluble heparin, both in silico and in vitro. Our results also showed that, while viral infection was inhibited by soluble glycosaminoglycans (GAGs), GAG-deficient cells were more resistant to the virus. Finally, we revealed that amv248 encodes an active heparin-binding glycosyltransferase which is likely to have a key role in the initiation of infection by AMEV.


Asunto(s)
Entomopoxvirinae/genética , Glicosiltransferasas/genética , Animales , Línea Celular , Glicosiltransferasas/química , Glicosiltransferasas/metabolismo , Heparina/metabolismo , Estructura Molecular , Sistemas de Lectura Abierta , Unión Proteica
18.
Virus Res ; 248: 31-38, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29471050

RESUMEN

Entomopoxviruses are an important group of viruses infecting only insects. They belong to Poxviridae which infect both invertebrates and vertebrates, including humans. Protein kinases are known to have roles at virus morphogenesis, host selectivity, the regulation of cell division and apoptosis in some vertebrate poxviruses. In this study, 2 protein kinases (PKs) (AMV153 and AMV197) of Amsacta moorei entomopoxvirus (AMEV) were investigated for the interactions among 230 viral proteins using yeast two-hybrid system (Y2H). For this purpose, two protein kinases and 230 viral genes were cloned into the bait and prey vectors, respectively. Bait vectors were introduced into Saccharomyces cerevisiae AH109. Expression of the bait genes were confirmed by western blot analysis. Both yeast strains of bait were transformed individually with each prey clone and grown on a selective medium (minimal synthetic defined) to determine the protein-protein interactions between bait and prey proteins. Transformations identified totally 16 interactions among AMEV protein kinases and all viral proteins of which 5 belong to AMV153 and 11 belong to AMV197. One of the five interactions detected for AMV153 protein kinase is self-association. Its other four interactions are with two virus entry complex proteins (AMV035 and AMV083), a membrane protein (AMV165) and a subunit of RNA polymerase (AMV230). The other protein kinase, AMV197, interacted with two virus entry complex proteins (AMV035 and AMV083) as AMV153, a caspase-2 enzyme (AMV063), a Holliday junction resolvase (AMV162), a membrane protein (AMV165), a subunit of RNA polymerase (AMV230) and five other hypothetical proteins (AMV026, AMV040, AMV062, AMV069, AMV120) encoded by AMEV genome. Glutathione S-transferase (GST) pull-down assay was used to confirm all interactions described by Y2H analysis. In addition, the theoretical structures of the two of 16 interactions were interpreted by docking analysis. Consistent with Y2H and pull down assays, docking analysis also showed the interactions of AMV063 with AMV153 and AMV197. Detected interactions of the AMEV viral proteins with viral protein kinases could lead to the understanding of the regulation of the viral activities of interacted viral proteins.


Asunto(s)
Entomopoxvirinae/fisiología , Insectos/virología , Infecciones por Poxviridae/virología , Mapeo de Interacción de Proteínas , Proteínas Quinasas/metabolismo , Proteínas Virales/metabolismo , Animales , Biblioteca de Genes , Modelos Moleculares , Plásmidos/genética , Unión Proteica , Conformación Proteica , Mapeo de Interacción de Proteínas/métodos , Proteínas Quinasas/química , Proteínas Quinasas/genética , Técnicas del Sistema de Dos Híbridos , Proteínas Virales/química , Proteínas Virales/genética
19.
Virus Res ; 243: 25-30, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29020603

RESUMEN

Amsacta moorei entomopoxvirus (AMEV), the most studied member of the genus Betaentomopoxvirus, was initially isolated from Red Hairy caterpillar larvae, Amsacta moorei. According to genome sequence and previous studies it was shown that amv248 encodes a putative glycosyltransferase that is the only conserved attachment protein in betaentomopoxviruses. Transcriptional analysis of the amv248 gene by RT-PCR and qPCR showed that transcription starts at 6h post infection (hpi). Also, transcription was not affected by a DNA replication inhibitor but was severely curtailed by a protein synthesis inhibitor. These results indicate that amv248 belongs to the intermediate class of gene expression. 5' and 3' untranslated regions analysis revealed that transcription initiates at position -126 relative to the translational start site, and ends between 50 and 83 bases after the stop codon. To narrow down the size and location of the gene's promoter, the upstream region as well as several different sized deletions thereof were generated and cloned upstream of a luciferase reporter gene. The constructs were used to measure the Firefly and Renilla luciferase activities in dual assays. The results showed that luciferase activity decreased when bases -198 to -235 of amv248 upstream region were missing. Sequence analysis among the intermediate gene promoters of AMEV showed that TTTAT(T/A)TT(T/A)2TTA is possibly a common motif, however, further investigations are needed to confirm this conclusion.


Asunto(s)
Entomopoxvirinae/enzimología , Glicosiltransferasas/genética , Mariposas Nocturnas/virología , Transcripción Genética , Proteínas Virales/genética , Animales , Entomopoxvirinae/clasificación , Entomopoxvirinae/genética , Entomopoxvirinae/aislamiento & purificación , Glicosiltransferasas/metabolismo , Larva/virología , Regiones Promotoras Genéticas , Proteínas Virales/metabolismo
20.
World J Microbiol Biotechnol ; 33(5): 95, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28405911

RESUMEN

Use of chemical pesticides in agriculture harms humans, non-target organisms and environments, and causes increase resistance against chemicals. In order to develop an effective bio-pesticide against coleopterans, particularly against Agelastica alni (Coleoptera: Chrysomelidae) which is one of the serious pests of alder leaf and hazelnut, we tested the insecticidal effect of 21 Bacillus isolates against the larvae and adults of the pest. Bacillus thuringiensis var. tenebrionis-Xd3 (Btt-Xd3) showed the highest insecticidal effect based on screening tests. For toxin protein production and high sporulation of Xd3, the most suitable medium, pH and temperature conditions were determined as nutrient broth medium enriched with salts, pH 7 and 30 °C, respectively. Sporulated Btt-Xd3 in nutrient broth medium enriched with salts transferred to fermentation medium containing soybean flour, glucose and salts. After fermentation, the mixture was dried in a spray dryer, and spore count of the powder product was determined as 1.6 × 1010 c.f.u. g-1. Moisture content, suspensibility and wettability of the formulation were determined as 8.3, 86% and 21 s, respectively. Lethal concentrations (LC50) of formulated Btt-Xd3 were determined as 0.15 × 105 c.f.u. ml-1 for larvae at laboratory conditions. LC50 values were also determined as 0.45 × 106 c.f.u. ml-1 at the field condition on larval stage. Our results showed that a new bio-pesticide developed from B. thuringiensis tenebrionis (Xd3) (Btt-Xd3) may be valuable as a biological control agent for coleopteran pests.


Asunto(s)
Bacillus thuringiensis/metabolismo , Toxinas Bacterianas/metabolismo , Agentes de Control Biológico/metabolismo , Escarabajos/efectos de los fármacos , Animales , Toxinas Bacterianas/toxicidad , Agentes de Control Biológico/toxicidad , Fermentación , Concentración de Iones de Hidrógeno , Larva/efectos de los fármacos , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...