Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 8(7): eabl5966, 2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35171679

RESUMEN

The global spread of multidrug-resistant Acinetobacter baumannii infections urgently calls for the identification of novel drug targets. We solved the electron cryo-microscopy structure of the F1Fo-adenosine 5'-triphosphate (ATP) synthase from A. baumannii in three distinct conformational states. The nucleotide-converting F1 subcomplex reveals a specific self-inhibition mechanism, which supports a unidirectional ratchet mechanism to avoid wasteful ATP consumption. In the membrane-embedded Fo complex, the structure shows unique structural adaptations along both the entry and exit pathways of the proton-conducting a-subunit. These features, absent in mitochondrial ATP synthases, represent attractive targets for the development of next-generation therapeutics that can act directly at the culmination of bioenergetics in this clinically relevant pathogen.


Asunto(s)
Acinetobacter baumannii , Adenosina Trifosfato/metabolismo , Microscopía por Crioelectrón
2.
FEBS Lett ; 592(3): 332-342, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29325219

RESUMEN

Flavin-based electron bifurcation (FBEB) is a recently discovered mode of energy coupling in anaerobic microorganisms. The electron-bifurcating caffeyl-CoA reductase (CarCDE) catalyzes the reduction of caffeyl-CoA and ferredoxin by oxidizing NADH. The 3.5 Å structure of the heterododecameric Car(CDE)4 complex of Acetobacterium woodii, presented here, reveals compared to other electron-transferring flavoprotein/acyl dehydrogenase family members an additional ferredoxin-like domain with two [4Fe-4S] clusters N-terminally fused to CarE. It might serve, in vivo, as specific adaptor for the physiological electron acceptor. Kinetic analysis of a CarCDE(∆Fd) complex indicates the bypassing of the ferredoxin-like domain by artificial electron acceptors. Site-directed mutagenesis studies substantiated the crucial role of the C-terminal arm of CarD and of ArgE203, hydrogen-bonded to the bifurcating FAD, for FBEB.


Asunto(s)
Acetobacterium/enzimología , Flavinas/metabolismo , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Acetobacterium/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Flavoproteínas Transportadoras de Electrones/química , Flavoproteínas Transportadoras de Electrones/genética , Flavoproteínas Transportadoras de Electrones/metabolismo , Ferredoxinas/metabolismo , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Oxidorreductasas/genética , Conformación Proteica , Dominios Proteicos
3.
Nat Commun ; 8(1): 1577, 2017 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-29146947

RESUMEN

The electron transferring flavoprotein/butyryl-CoA dehydrogenase (EtfAB/Bcd) catalyzes the reduction of one crotonyl-CoA and two ferredoxins by two NADH within a flavin-based electron-bifurcating process. Here we report on the X-ray structure of the Clostridium difficile (EtfAB/Bcd)4 complex in the dehydrogenase-conducting D-state, α-FAD (bound to domain II of EtfA) and δ-FAD (bound to Bcd) being 8 Å apart. Superimposing Acidaminococcus fermentans EtfAB onto C. difficile EtfAB/Bcd reveals a rotation of domain II of nearly 80°. Further rotation by 10° brings EtfAB into the bifurcating B-state, α-FAD and ß-FAD (bound to EtfB) being 14 Å apart. This dual binding mode of domain II, substantiated by mutational studies, resembles findings in non-bifurcating EtfAB/acyl-CoA dehydrogenase complexes. In our proposed mechanism, NADH reduces ß-FAD, which bifurcates. One electron goes to ferredoxin and one to α-FAD, which swings over to reduce δ-FAD to the semiquinone. Repetition affords a second reduced ferredoxin and δ-FADH-, which reduces crotonyl-CoA.


Asunto(s)
Acilcoenzima A/química , Butiril-CoA Deshidrogenasa/química , Clostridioides difficile/enzimología , Ferredoxinas/química , Flavina-Adenina Dinucleótido/química , NAD/química , Acidaminococcus/enzimología , Acilcoenzima A/metabolismo , Butiril-CoA Deshidrogenasa/metabolismo , Clostridioides difficile/metabolismo , Cristalografía por Rayos X , Transporte de Electrón , Oxidación-Reducción
4.
FEBS Lett ; 590(24): 4472-4479, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27889905

RESUMEN

Flavin-based electron bifurcation (FBEB) is a novel mechanism of energy coupling used by anaerobic microorganisms to optimize their energy metabolism efficiency. The first high-resolution structure of a complete FBEB enzyme complex, the NADH-dependent reduced ferredoxin: NADP+ -oxidoreductase (NfnAB) of Thermotoga maritima, was recently solved. However, no experimental evidence for the NADPH-binding site and conformational changes during the FBEB reaction are available. Here we analyzed ligand binding and the conformational dynamics of oxygen-sensitive NfnAB using Hydrogen-Deuterium Exchange Mass-Spectrometry, including a customized anaerobic workflow. We confirmed the NADH and the previously postulated NADPH-binding site. Furthermore, we observed an NfnA-NfnB rearrangement upon NADPH binding which supports the proposed FBEB mechanism.


Asunto(s)
Proteínas Bacterianas/química , Ferredoxinas/química , NADH NADPH Oxidorreductasas/química , NADP/química , NAD/química , Thermotoga maritima/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Medición de Intercambio de Deuterio , Ferredoxinas/metabolismo , Expresión Génica , Ligandos , Espectrometría de Masas/instrumentación , Espectrometría de Masas/métodos , Modelos Moleculares , NAD/metabolismo , NADH NADPH Oxidorreductasas/genética , NADH NADPH Oxidorreductasas/metabolismo , NADP/metabolismo , Oxidación-Reducción , Unión Proteica , Dominios Proteicos , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Especificidad por Sustrato , Thermotoga maritima/enzimología
5.
J Biol Chem ; 290(36): 21985-95, 2015 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-26139605

RESUMEN

NADH-dependent reduced ferredoxin:NADP oxidoreductase (NfnAB) is found in the cytoplasm of various anaerobic bacteria and archaea. The enzyme reversibly catalyzes the endergonic reduction of ferredoxin with NADPH driven by the exergonic transhydrogenation from NADPH onto NAD(+). Coupling is most probably accomplished via the mechanism of flavin-based electron bifurcation. To understand this process on a structural basis, we heterologously produced the NfnAB complex of Thermotoga maritima in Escherichia coli, provided kinetic evidence for its bifurcating behavior, and determined its x-ray structure in the absence and presence of NADH. The structure of NfnAB reveals an electron transfer route including the FAD (a-FAD), the [2Fe-2S] cluster of NfnA and the FAD (b-FAD), and the two [4Fe-4S] clusters of NfnB. Ferredoxin is presumably docked onto NfnB close to the [4Fe-4S] cluster distal to b-FAD. NAD(H) binds to a-FAD and NADP(H) consequently to b-FAD, which is positioned in the center of the NfnAB complex and the site of electron bifurcation. Arg(187) is hydrogen-bonded to N5 and O4 of the bifurcating b-FAD and might play a key role in adjusting a low redox potential of the FADH(•)/FAD pair required for ferredoxin reduction. A mechanism of FAD-coupled electron bifurcation by NfnAB is proposed.


Asunto(s)
Proteínas Bacterianas/metabolismo , Ferredoxina-NADP Reductasa/metabolismo , Flavinas/metabolismo , NAD/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Cristalografía por Rayos X , Transporte de Electrón , Electrones , Electroforesis en Gel de Poliacrilamida , Ferredoxina-NADP Reductasa/química , Ferredoxina-NADP Reductasa/genética , Ferredoxinas/química , Ferredoxinas/metabolismo , Flavinas/química , Enlace de Hidrógeno , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/metabolismo , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , NAD/química , Oxidación-Reducción , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Thermotoga maritima/enzimología , Thermotoga maritima/genética
6.
J Biol Chem ; 289(8): 5145-57, 2014 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-24379410

RESUMEN

Electron bifurcation is a fundamental strategy of energy coupling originally discovered in the Q-cycle of many organisms. Recently a flavin-based electron bifurcation has been detected in anaerobes, first in clostridia and later in acetogens and methanogens. It enables anaerobic bacteria and archaea to reduce the low-potential [4Fe-4S] clusters of ferredoxin, which increases the efficiency of the substrate level and electron transport phosphorylations. Here we characterize the bifurcating electron transferring flavoprotein (EtfAf) and butyryl-CoA dehydrogenase (BcdAf) of Acidaminococcus fermentans, which couple the exergonic reduction of crotonyl-CoA to butyryl-CoA to the endergonic reduction of ferredoxin both with NADH. EtfAf contains one FAD (α-FAD) in subunit α and a second FAD (ß-FAD) in subunit ß. The distance between the two isoalloxazine rings is 18 Å. The EtfAf-NAD(+) complex structure revealed ß-FAD as acceptor of the hydride of NADH. The formed ß-FADH(-) is considered as the bifurcating electron donor. As a result of a domain movement, α-FAD is able to approach ß-FADH(-) by about 4 Å and to take up one electron yielding a stable anionic semiquinone, α-FAD, which donates this electron further to Dh-FAD of BcdAf after a second domain movement. The remaining non-stabilized neutral semiquinone, ß-FADH(•), immediately reduces ferredoxin. Repetition of this process affords a second reduced ferredoxin and Dh-FADH(-) that converts crotonyl-CoA to butyryl-CoA.


Asunto(s)
Acidaminococcus/enzimología , Biocatálisis , Butiril-CoA Deshidrogenasa/metabolismo , Flavoproteínas Transportadoras de Electrones/metabolismo , Electrones , Butiril-CoA Deshidrogenasa/química , Cristalografía por Rayos X , Transporte de Electrón , Flavoproteínas Transportadoras de Electrones/química , Electroforesis en Gel de Poliacrilamida , Ferredoxinas/química , Ferredoxinas/metabolismo , Flavina-Adenina Dinucleótido/química , Flavina-Adenina Dinucleótido/metabolismo , Flavinas/química , Flavinas/metabolismo , Cinética , Modelos Biológicos , Simulación del Acoplamiento Molecular , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectrofotometría Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA