Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38766269

RESUMEN

Ubiquitin controls many cellular processes via its post-translational conjugation onto substrates. Its use is highly variable due to its ability to form poly-ubiquitin with various topologies. Among them, linear chains have emerged as important regulators of immune responses and protein degradation. Previous studies in Drosophila melanogaster found that expression of linear poly-ubiquitin that cannot be dismantled into single moieties leads to their own ubiquitination and degradation or, alternatively, to their conjugation onto proteins. However, it remains largely unknown which proteins are sensitive to linear poly-ubiquitin. To address this question, here we expanded the toolkit to modulate linear chains and conducted ultra-deep coverage proteomics from flies that express non-cleavable, linear chains comprising 2, 4, or 6 moieties. We found that these chains regulate shared and distinct cellular processes in Drosophila by impacting hundreds of proteins. Our results provide key insight into the proteome subsets and cellular pathways that are influenced by linear poly-ubiquitin with distinct lengths and suggest that the ubiquitin system is exceedingly pliable.

2.
bioRxiv ; 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38168249

RESUMEN

Ubiquitin-conjugating enzymes (E2s) are key for regulating protein function and turnover via ubiquitination but it remains undetermined which E2s maintain proteostasis during aging. Here, we find that E2s have diverse roles in handling a model aggregation-prone protein (huntingtin-polyQ) in the Drosophila retina: while some E2s mediate aggregate assembly, UBE2D/effete (eff) and other E2s are required for huntingtin-polyQ degradation. UBE2D/eff is key for proteostasis also in skeletal muscle: eff protein levels decline with aging, and muscle-specific eff knockdown causes an accelerated buildup in insoluble poly-ubiquitinated proteins (which progressively accumulate with aging) and shortens lifespan. Transgenic expression of human UBE2D2, homologous to eff, partially rescues the lifespan and proteostasis deficits caused by muscle-specific effRNAi by re-establishing the physiological levels of effRNAi-regulated proteins, which include several regulators of proteostasis. Interestingly, UBE2D/eff knockdown in young age reproduces part of the proteomic changes that normally occur in old muscles, suggesting that the decrease in UBE2D/eff protein levels that occurs with aging contributes to reshaping the composition of the muscle proteome. Altogether, these findings indicate that UBE2D/eff is a key E2 ubiquitin-conjugating enzyme that ensures protein quality control and helps maintain a youthful proteome composition during aging.

3.
Nat Commun ; 14(1): 7348, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37963875

RESUMEN

Ubiquitination is a post-translational modification initiated by the E1 enzyme UBA1, which transfers ubiquitin to ~35 E2 ubiquitin-conjugating enzymes. While UBA1 loss is cell lethal, it remains unknown how partial reduction in UBA1 activity is endured. Here, we utilize deep-coverage mass spectrometry to define the E1-E2 interactome and to determine the proteins that are modulated by knockdown of UBA1 and of each E2 in human cells. These analyses define the UBA1/E2-sensitive proteome and the E2 specificity in protein modulation. Interestingly, profound adaptations in peroxisomes and other organelles are triggered by decreased ubiquitination. While the cargo receptor PEX5 depends on its mono-ubiquitination for binding to peroxisomal proteins and importing them into peroxisomes, we find that UBA1/E2 knockdown induces the compensatory upregulation of other PEX proteins necessary for PEX5 docking to the peroxisomal membrane. Altogether, this study defines a homeostatic mechanism that sustains peroxisomal protein import in cells with decreased ubiquitination capacity.


Asunto(s)
Peroxisomas , Ubiquitina , Humanos , Ubiquitinación , Ubiquitina/metabolismo , Transporte de Proteínas/fisiología , Peroxisomas/metabolismo , Membranas Intracelulares/metabolismo
4.
Nat Aging ; 3(11): 1313-1314, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37903915

Asunto(s)
Longevidad , Humanos
5.
Bioessays ; 45(12): e2300134, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37712935

RESUMEN

Platelets have important hemostatic functions in repairing blood vessels upon tissue injury. Cytokines, growth factors, and metabolites stored in platelet α-granules and dense granules are released upon platelet activation and clotting. Emerging evidence indicates that such platelet-derived signaling factors are instrumental in guiding tissue regeneration. Here, we discuss the important roles of platelet-secreted signaling factors in skeletal muscle regeneration. Chemokines secreted by platelets in the early phase after injury are needed to recruit neutrophils to injured muscles, and impeding this early step of muscle regeneration exacerbates inflammation at later stages, compromises neo-angiogenesis and the growth of newly formed myofibers, and reduces post-injury muscle force production. Platelets also contribute to the recruitment of pro-regenerative stromal cells from the adipose tissue, and the platelet releasate may also regulate the metabolism and proliferation of muscle satellite cells, which sustain myogenesis. Therefore, harnessing the signaling functions of platelets and the platelet secretome may provide new avenues for promoting skeletal muscle regeneration in health and disease.


Asunto(s)
Plaquetas , Músculo Esquelético , Plaquetas/metabolismo , Músculo Esquelético/fisiología , Transducción de Señal , Cicatrización de Heridas , Citocinas/metabolismo
6.
Nat Commun ; 14(1): 2900, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37217480

RESUMEN

Skeletal muscle regeneration involves coordinated interactions between different cell types. Injection of platelet-rich plasma is circumstantially considered an aid to muscle repair but whether platelets promote regeneration beyond their role in hemostasis remains unexplored. Here, we find that signaling via platelet-released chemokines is an early event necessary for muscle repair in mice. Platelet depletion reduces the levels of the platelet-secreted neutrophil chemoattractants CXCL5 and CXCL7/PPBP. Consequently, early-phase neutrophil infiltration to injured muscles is impaired whereas later inflammation is exacerbated. Consistent with this model, neutrophil infiltration to injured muscles is compromised in male mice with Cxcl7-knockout platelets. Moreover, neo-angiogenesis and the re-establishment of myofiber size and muscle strength occurs optimally in control mice post-injury but not in Cxcl7ko mice and in neutrophil-depleted mice. Altogether, these findings indicate that platelet-secreted CXCL7 promotes regeneration by recruiting neutrophils to injured muscles, and that this signaling axis could be utilized therapeutically to boost muscle regeneration.


Asunto(s)
Quimiocinas , Músculo Esquelético , Ratones , Masculino , Animales , Infiltración Neutrófila , Músculo Esquelético/fisiología , Inflamación , Neutrófilos/fisiología
7.
Cell Rep ; 42(1): 111934, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36640353

RESUMEN

Cachexia is a systemic wasting syndrome that increases cancer-associated mortality. How cachexia progressively and differentially impacts distinct tissues is largely unknown. Here, we find that the heart and skeletal muscle undergo wasting at early stages and are the tissues transcriptionally most impacted by cachexia. We also identify general and organ-specific transcriptional changes that indicate functional derangement by cachexia even in tissues that do not undergo wasting, such as the brain. Secreted factors constitute a top category of cancer-regulated genes in host tissues, and these changes include upregulation of the angiotensin-converting enzyme (ACE). ACE inhibition with the drug lisinopril improves muscle force and partially impedes cachexia-induced transcriptional changes, although wasting is not prevented, suggesting that cancer-induced host-secreted factors can regulate tissue function during cachexia. Altogether, by defining prevalent and temporal and tissue-specific responses to cachexia, this resource highlights biomarkers and possible targets for general and tissue-tailored anti-cachexia therapies.


Asunto(s)
Melanoma , Neoplasias , Síndrome Debilitante , Ratones , Animales , Caquexia , Neoplasias/patología , Músculo Esquelético/patología , Síndrome Debilitante/complicaciones , Melanoma/patología , Atrofia Muscular/patología
8.
Cell Rep ; 42(1): 111970, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36640359

RESUMEN

Protein quality control is important for healthy aging and is dysregulated in age-related diseases. The autophagy-lysosome and ubiquitin-proteasome are key for proteostasis, but it remains largely unknown whether other proteolytic systems also contribute to maintain proteostasis during aging. Here, we find that expression of proteolytic enzymes (proteases/peptidases) distinct from the autophagy-lysosome and ubiquitin-proteasome systems declines during skeletal muscle aging in Drosophila. Age-dependent protease downregulation undermines proteostasis, as demonstrated by the increase in detergent-insoluble poly-ubiquitinated proteins and pathogenic huntingtin-polyQ levels in response to protease knockdown. Computational analyses identify the transcription factor Ptx1 (homologous to human PITX1/2/3) as a regulator of protease expression. Consistent with this model, Ptx1 protein levels increase with aging, and Ptx1 RNAi counteracts the age-associated downregulation of protease expression. Moreover, Ptx1 RNAi improves muscle protein quality control in a protease-dependent manner and extends lifespan. These findings indicate that proteases and their transcriptional modulator Ptx1 ensure proteostasis during aging.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Factores de Transcripción , Humanos , Envejecimiento/metabolismo , Endopeptidasas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Factores de Transcripción/metabolismo , Ubiquitinas/metabolismo , Animales , Drosophila
9.
Brain Plast ; 8(1): 43-63, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36448045

RESUMEN

Skeletal muscle health and function are important determinants of systemic metabolic homeostasis and organism-wide responses, including disease outcome. While it is well known that exercise protects the central nervous system (CNS) from aging and disease, only recently this has been found to depend on the endocrine capacity of skeletal muscle. Here, we review muscle-secreted growth factors and cytokines (myokines), metabolites (myometabolites), and other unconventional signals (e.g. bioactive lipid species, enzymes, and exosomes) that mediate muscle-brain and muscle-retina communication and neuroprotection in response to exercise and associated processes, such as the muscle unfolded protein response and metabolic stress. In addition to impacting proteostasis, neurogenesis, and cognitive functions, muscle-brain signaling influences complex brain-dependent behaviors, such as depression, sleeping patterns, and biosynthesis of neurotransmitters. Moreover, myokine signaling adapts feeding behavior to meet the energy demands of skeletal muscle. Contrary to protective myokines induced by exercise and associated signaling pathways, inactivity and muscle wasting may derange myokine expression and secretion and in turn compromise CNS function. We propose that tailoring muscle-to-CNS signaling by modulating myokines and myometabolites may combat age-related neurodegeneration and brain diseases that are influenced by systemic signals.

10.
Bio Protoc ; 12(11)2022 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-35799907

RESUMEN

Aging and wasting of skeletal muscle reduce organismal fitness. Regrettably, only limited interventions are currently available to address this unmet medical need. Many methods have been developed to study this condition, including the intramuscular electroporation of DNA plasmids. However, this technique requires surgery and high electrical fields, which cause tissue damage. Here, we report an optimized protocol for the electroporation of small interfering RNAs (siRNAs) into the tibialis anterior muscle of mice. This protocol does not require surgery and, because of the small siRNA size, mild electroporation conditions are utilized. By inducing target mRNA knockdown, this method can be used to interrogate gene function in muscles of mice from different strains, genotypes, and ages. Moreover, a complementary method for siRNA transfection into differentiated myotubes can be used for testing siRNA efficacy before in vivo use. Altogether, this streamlined protocol is instrumental for basic science and translational studies in muscles of mice and other animal models.

11.
Nat Commun ; 13(1): 2370, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35501350

RESUMEN

Decline in skeletal muscle cell size (myofiber atrophy) is a key feature of cancer-induced wasting (cachexia). In particular, atrophy of the diaphragm, the major muscle responsible for breathing, is an important determinant of cancer-associated mortality. However, therapeutic options are limited. Here, we have used Drosophila transgenic screening to identify muscle-secreted factors (myokines) that act as paracrine regulators of myofiber growth. Subsequent testing in mouse myotubes revealed that mouse Fibcd1 is an evolutionary-conserved myokine that preserves myofiber size via ERK signaling. Local administration of recombinant Fibcd1 (rFibcd1) ameliorates cachexia-induced myofiber atrophy in the diaphragm of mice bearing patient-derived melanoma xenografts and LLC carcinomas. Moreover, rFibcd1 impedes cachexia-associated transcriptional changes in the diaphragm. Fibcd1-induced signaling appears to be muscle selective because rFibcd1 increases ERK activity in myotubes but not in several cancer cell lines tested. We propose that rFibcd1 may help reinstate myofiber size in the diaphragm of patients with cancer cachexia.


Asunto(s)
Caquexia , Neoplasias , Animales , Atrofia/metabolismo , Caquexia/metabolismo , Humanos , Ratones , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Neoplasias/complicaciones , Neoplasias/genética , Neoplasias/metabolismo , Receptores de Superficie Celular/metabolismo
12.
Aging Cell ; 21(5): e13603, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35349763

RESUMEN

Protein quality control ensures the degradation of damaged and misfolded proteins. Derangement of proteostasis is a primary cause of aging and age-associated diseases. The ubiquitin-proteasome and autophagy-lysosome play key roles in proteostasis but, in addition to these systems, the human genome encodes for ~600 proteases, also known as peptidases. Here, we examine the role of proteases in aging and age-related neurodegeneration. Proteases are present across cell compartments, including the extracellular space, and their substrates encompass cellular constituents, proteins with signaling functions, and misfolded proteins. Proteolytic processing by proteases can lead to changes in the activity and localization of substrates or to their degradation. Proteases cooperate with the autophagy-lysosome and ubiquitin-proteasome systems but also have independent proteolytic roles that impact all hallmarks of cellular aging. Specifically, proteases regulate mitochondrial function, DNA damage repair, cellular senescence, nutrient sensing, stem cell properties and regeneration, protein quality control and stress responses, and intercellular signaling. The capacity of proteases to regulate cellular functions translates into important roles in preserving tissue homeostasis during aging. Consequently, proteases influence the onset and progression of age-related pathologies and are important determinants of health span. Specifically, we examine how certain proteases promote the progression of Alzheimer's, Huntington's, and/or Parkinson's disease whereas other proteases protect from neurodegeneration. Mechanistically, cleavage by proteases can lead to the degradation of a pathogenic protein and hence impede disease pathogenesis. Alternatively, proteases can generate substrate byproducts with increased toxicity, which promote disease progression. Altogether, these studies indicate the importance of proteases in aging and age-related neurodegeneration.


Asunto(s)
Enfermedades Neurodegenerativas , Complejo de la Endopetidasa Proteasomal , Envejecimiento/metabolismo , Endopeptidasas/metabolismo , Humanos , Enfermedades Neurodegenerativas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas/metabolismo , Proteolisis , Ubiquitina/metabolismo
13.
J Gerontol A Biol Sci Med Sci ; 77(2): 259-267, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-34477202

RESUMEN

Metabolic adaptations occur with aging but the significance and causal roles of such changes are only partially known. In Drosophila, we find that skeletal muscle aging is paradoxically characterized by increased readouts of glycolysis (lactate, NADH/NAD+) but reduced expression of most glycolytic enzymes. This conundrum is explained by lactate dehydrogenase (LDH), an enzyme necessary for anaerobic glycolysis and whose expression increases with aging. Experimental Ldh overexpression in skeletal muscle of young flies increases glycolysis and shortens life span, suggesting that age-related increases in muscle LDH contribute to mortality. Similar results are also found with overexpression of other glycolytic enzymes (Pfrx/PFKFB, Pgi/GPI). Conversely, hypomorphic mutations in Ldh extend life span, whereas reduction in PFK, Pglym78/PGAM, Pgi/GPI, and Ald/ALDO levels shorten life span to various degrees, indicating that glycolysis needs to be tightly controlled for optimal aging. Altogether, these findings indicate a role for muscle LDH and glycolysis in aging.


Asunto(s)
Drosophila , Longevidad , Animales , Glucólisis/genética , L-Lactato Deshidrogenasa/genética , L-Lactato Deshidrogenasa/metabolismo , Longevidad/genética , Músculo Esquelético/metabolismo
14.
PLoS Genet ; 17(11): e1009926, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34780463

RESUMEN

Myofiber atrophy occurs with aging and in many diseases but the underlying mechanisms are incompletely understood. Here, we have used >1,100 muscle-targeted RNAi interventions to comprehensively assess the function of 447 transcription factors in the developmental growth of body wall skeletal muscles in Drosophila. This screen identifies new regulators of myofiber atrophy and hypertrophy, including the transcription factor Deaf1. Deaf1 RNAi increases myofiber size whereas Deaf1 overexpression induces atrophy. Consistent with its annotation as a Gsk3 phosphorylation substrate, Deaf1 and Gsk3 induce largely overlapping transcriptional changes that are opposed by Deaf1 RNAi. The top category of Deaf1-regulated genes consists of glycolytic enzymes, which are suppressed by Deaf1 and Gsk3 but are upregulated by Deaf1 RNAi. Similar to Deaf1 and Gsk3 overexpression, RNAi for glycolytic enzymes reduces myofiber growth. Altogether, this study defines the repertoire of transcription factors that regulate developmental myofiber growth and the role of Gsk3/Deaf1/glycolysis in this process.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Glucógeno Sintasa Quinasa 3/genética , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Animales , Animales Modificados Genéticamente/genética , Modelos Animales de Enfermedad , Drosophila melanogaster/genética , Desarrollo Embrionario/genética , Glucólisis/genética , Humanos , Músculo Esquelético/crecimiento & desarrollo , Atrofia Muscular/patología , Miofibrillas/genética , Miofibrillas/metabolismo , Interferencia de ARN , Factores de Transcripción/genética
15.
Cell Rep ; 37(6): 109971, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34758314

RESUMEN

Skeletal muscle atrophy is a debilitating condition that occurs with aging and disease, but the underlying mechanisms are incompletely understood. Previous work determined that common transcriptional changes occur in muscle during atrophy induced by different stimuli. However, whether this holds true at the proteome level remains largely unexplored. Here, we find that, contrary to this earlier model, distinct atrophic stimuli (corticosteroids, cancer cachexia, and aging) induce largely different mRNA and protein changes during muscle atrophy in mice. Moreover, there is widespread transcriptome-proteome disconnect. Consequently, atrophy markers (atrogenes) identified in earlier microarray-based studies do not emerge from proteomics as generally induced by atrophy. Rather, we identify proteins that are distinctly modulated by different types of atrophy (herein defined as "atroproteins") such as the myokine CCN1/Cyr61, which regulates myofiber type switching during sarcopenia. Altogether, these integrated analyses indicate that different catabolic stimuli induce muscle atrophy via largely distinct mechanisms.


Asunto(s)
Regulación de la Expresión Génica , Músculo Esquelético/patología , Atrofia Muscular/patología , Proteoma , Sarcopenia/patología , Transcriptoma , Envejecimiento , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Sarcopenia/genética , Sarcopenia/metabolismo
16.
STAR Protoc ; 2(3): 100628, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34235493

RESUMEN

Defects in protein quality control are the underlying cause of age-related diseases. The western blot analysis of detergent-soluble and insoluble protein fractions has proven useful in identifying interventions that regulate proteostasis. Here, we describe the protocol for such analyses in Drosophila tissues, mouse skeletal muscle, human organoids, and HEK293 cells. We describe key adaptations of this protocol and provide key information that will help modify this protocol for future studies in other tissues and disease models. For complete details on the use and execution of this protocol, please refer to Rai et al. (2021) and Hunt el al. (2021).


Asunto(s)
Western Blotting/métodos , Detergentes/química , Proteínas/metabolismo , Proteostasis , Animales , Electroforesis en Gel de Poliacrilamida , Células HEK293 , Humanos , Ratones , Proteínas/química , Solubilidad , Ubiquitinación
17.
G3 (Bethesda) ; 11(7)2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-33974070

RESUMEN

Recent evidence indicates that the composition of the ribosome is heterogeneous and that multiple types of specialized ribosomes regulate the synthesis of specific protein subsets. In Drosophila, we find that expression of the ribosomal RpS28 protein variants RpS28a and RpS28-like preferentially occurs in the germline, a tissue resistant to aging and that it significantly declines in skeletal muscle during aging. Muscle-specific overexpression of RpS28a at levels similar to those seen in the germline decreases early mortality and promotes the synthesis of a subset of proteins with known anti-aging roles, some of which have preferential expression in the germline. These findings indicate a contribution of specialized ribosomal proteins to the regulation of the muscle proteome during aging.


Asunto(s)
Proteoma , Proteínas Ribosómicas , Animales , Proteínas Ribosómicas/genética , Proteoma/genética , Proteoma/metabolismo , Biosíntesis de Proteínas , Ribosomas/genética , Ribosomas/metabolismo , Músculo Esquelético/metabolismo , Drosophila/genética , Drosophila/metabolismo , ARN Ribosómico/metabolismo
18.
Ageing Res Rev ; 69: 101358, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33979693

RESUMEN

Huntington disease (HD) is an autosomal dominant neurodegenerative disease that is caused by expansion of cytosine/adenosine/guanine repeats in the huntingtin (HTT) gene, which leads to a toxic, aggregation-prone, mutant HTT-polyQ protein. Beyond the well-established mechanisms of HD progression in the central nervous system, growing evidence indicates that also peripheral tissues are affected in HD and that systemic signaling originating from peripheral tissues can influence the progression of HD in the brain. Herein, we review the systemic manifestation of HD in peripheral tissues, and the impact of systemic signaling on HD pathogenesis. Mutant HTT induces a body wasting syndrome (cachexia) primarily via its activity in skeletal muscle, bone, adipose tissue, and heart. Additional whole-organism effects induced by mutant HTT include decline in systemic metabolic homeostasis, which stems from derangement of pancreas, liver, gut, hypothalamic-pituitary-adrenal axis, and circadian functions. In addition to spreading via the bloodstream and a leaky blood brain barrier, HTT-polyQ may travel long distance via its uptake by neurons and its axonal transport from the peripheral to the central nervous system. Lastly, signaling factors that are produced and/or secreted in response to therapeutic interventions such as exercise or in response to mutant HTT activity in peripheral tissues may impact HD. In summary, these studies indicate that HD is a systemic disease that is influenced by intertissue signaling and by the action of pathogenic HTT in peripheral tissues. We propose that treatment strategies for HD should include the amelioration of HD symptoms in peripheral tissues. Moreover, harnessing signaling between peripheral tissues and the brain may provide a means for reducing HD progression in the central nervous system.


Asunto(s)
Enfermedad de Huntington , Enfermedades Neurodegenerativas , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/genética , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo
19.
Nat Commun ; 12(1): 1418, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33658508

RESUMEN

Sarcopenia is a degenerative condition that consists in age-induced atrophy and functional decline of skeletal muscle cells (myofibers). A common hypothesis is that inducing myofiber hypertrophy should also reinstate myofiber contractile function but such model has not been extensively tested. Here, we find that the levels of the ubiquitin ligase UBR4 increase in skeletal muscle with aging, and that UBR4 increases the proteolytic activity of the proteasome. Importantly, muscle-specific UBR4 loss rescues age-associated myofiber atrophy in mice. However, UBR4 loss reduces the muscle specific force and accelerates the decline in muscle protein quality that occurs with aging in mice. Similarly, hypertrophic signaling induced via muscle-specific loss of UBR4/poe and of ESCRT members (HGS/Hrs, STAM, USP8) that degrade ubiquitinated membrane proteins compromises muscle function and shortens lifespan in Drosophila by reducing protein quality control. Altogether, these findings indicate that these ubiquitin ligases antithetically regulate myofiber size and muscle protein quality control.


Asunto(s)
Envejecimiento/fisiología , Proteínas de Unión a Calmodulina/metabolismo , Proteínas de Drosophila/metabolismo , Fibras Musculares Esqueléticas/fisiología , Proteínas Musculares/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Animales Modificados Genéticamente , Autofagia/fisiología , Proteínas de Unión a Calmodulina/genética , Proteínas de Drosophila/genética , Femenino , Lisosomas/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/patología , Músculo Esquelético/fisiología , Proteolisis , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética
20.
Cell Metab ; 33(6): 1137-1154.e9, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33773104

RESUMEN

Neurodegeneration in the central nervous system (CNS) is a defining feature of organismal aging that is influenced by peripheral tissues. Clinical observations indicate that skeletal muscle influences CNS aging, but the underlying muscle-to-brain signaling remains unexplored. In Drosophila, we find that moderate perturbation of the proteasome in skeletal muscle induces compensatory preservation of CNS proteostasis during aging. Such long-range stress signaling depends on muscle-secreted Amyrel amylase. Mimicking stress-induced Amyrel upregulation in muscle reduces age-related accumulation of poly-ubiquitinated proteins in the brain and retina via chaperones. Preservation of proteostasis stems from the disaccharide maltose, which is produced via Amyrel amylase activity. Correspondingly, RNAi for SLC45 maltose transporters reduces expression of Amyrel-induced chaperones and worsens brain proteostasis during aging. Moreover, maltose preserves proteostasis and neuronal activity in human brain organoids challenged by thermal stress. Thus, proteasome stress in skeletal muscle hinders retinal and brain aging by mounting an adaptive response via amylase/maltose.


Asunto(s)
Envejecimiento/metabolismo , Amilasas/fisiología , Encéfalo/metabolismo , Proteínas de Drosophila/fisiología , Enfermedades Neurodegenerativas/metabolismo , Complejo de la Endopetidasa Proteasomal/fisiología , Retina/metabolismo , Animales , Encéfalo/patología , Línea Celular , Drosophila melanogaster , Humanos , Retina/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA