Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Nat Rev Chem ; 8(8): 628-643, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39039210

RESUMEN

Disorder in redox-active monolayers convolutes electrochemical characterization. This disorder can come from pinhole defects, loose packing, heterogeneous distribution of redox-active headgroups, and lateral interactions between immobilized redox-active molecules. Identifying the source of non-ideal behaviour in cyclic voltammograms can be challenging as different types of disorder often cause similar non-ideal cyclic voltammetry behaviour such as peak broadening, large peak-to-peak separation, peak asymmetry and multiple peaks for single redox processes. This Review provides an overview of ideal voltammetric behaviour for redox-active monolayers, common manifestations of disorder on voltammetric responses, common experimental parameters that can be varied to interrogate sources of disorder, and finally, examples of different types of disorder and how they impact electrochemical responses.

3.
Nano Lett ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847791

RESUMEN

This work reports in situ (active) electrochemical control over the coupling strength between semiconducting nanoplatelets and a plasmonic cavity. We found that by applying a reductive bias to an Al nanoparticle lattice working electrode the number of CdSe nanoplatelet emitters that can couple to the cavity is decreased. Strong coupling can be reversibly recovered by discharging the lattice at oxidative potentials relative to the conduction band edge reduction potential of the emitters. By correlating the number of electrons added or removed with the measured coupling strength, we identified that loss and recovery of strong coupling are likely hindered by side processes that trap and/or inhibit electrons from populating the nanoplatelet conduction band. These findings demonstrate tunable, external control of strong coupling and offer prospects to tune selectivity in chemical reactions.

4.
Chem Sci ; 15(18): 6661-6678, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38725519

RESUMEN

Ligand-to-metal charge transfer (LMCT) excited states are capable of undergoing a wide array of photochemical reactions, yet receive minimal attention compared to other charge transfer excited states. This work provides general criteria for designing transition metal complexes that exhibit low energy LMCT excited states and routes to drive photochemistry from these excited states. General design principles regarding metal identity, oxidation state, geometry, and ligand sets are summarized. Fundamental photoreactions from these states including visible light-induced homolysis, excited state electron transfer, and other photoinduced chemical transformations are discussed and key design principles for enabling these photochemical reactions are further highlighted. Guided by these fundamentals, this review outlines critical considerations for the future design and application of coordination complexes with LMCT excited states.

5.
J Am Chem Soc ; 146(12): 7998-8004, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38507795

RESUMEN

A high-surface-area p-type porous Si photocathode containing a covalently immobilized molecular Re catalyst is highly selective for the photoelectrochemical conversion of CO2 to CO. It gives Faradaic efficiencies of up to 90% for CO at potentials of -1.7 V (versus ferrocenium/ferrocene) under 1 sun illumination in an acetonitrile solution containing phenol. The photovoltage is approximately 300 mV based on comparisons with similar n-type porous Si cathodes in the dark. Using an estimate of the equilibrium potential for CO2 reduction to CO under optimized reaction conditions, photoelectrolysis was performed at a small overpotential, and the onset of electrocatalysis in cyclic voltammograms occurred at a modest underpotential. The porous Si photoelectrode is more stable and selective for CO production than the photoelectrode generated by attaching the same Re catalyst to a planar Si wafer. Further, facile characterization of the porous Si-based photoelectrodes using transmission mode FTIR spectroscopy leads to highly reproducible catalytic performance.

6.
J Am Chem Soc ; 146(8): 5252-5262, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38373282

RESUMEN

Accessing semiconductor nanocrystals free from surface defects is an outstanding challenge in the design of materials with targeted properties. Despite the established importance of Z-type ligand surface passivation to eliminate defects, the optical and electronic properties of nanocrystals vary depending on the nanocrystal composition and Z-type ligand identity. In this work, a series of Cd-, Zn-, and Pb-based non-native Z-type ligands with the formula MX2 (X = undecylenate or chloride) were employed to elucidate Z-type ligand characteristics that result in surface passivation of undercoordinated surface ions to eliminate trap states from CdSe nanocrystals. First, CdSe nanocrystals were reacted with N,N,N',N'-tetramethylethylene-1,2-diamine (TMEDA) to remove native Cd(oleate)2 Z-type ligands from the surface, resulting in undercoordinated surface chalcogen ions. After subsequent reaction with M(UDA)2, ligands bound to the surface were quantified by NMR spectroscopy, and in parallel, the impact of Z-type ligands on the nanocrystal optical properties was monitored using photoluminescence spectroscopy. We find that Cd- and Zn-based Z-type ligands exhibit similar reactivity with the nanocrystal surface via NMR spectroscopy, yet Cd(UDA)2 passivation results in an 800% PL increase while Zn(UDA)2 passivation yields a 13% increase in photoluminescence intensity. Nanocrystals reacted with Pb-based Z-type ligands have lower surface coverage, as quantified by NMR spectroscopy, and lead to only a marginal increase of nanocrystal photoluminescence intensity (60%). These data indicate that the metal identity of the Z-type ligand has a profound impact on the reactivity and resulting electronic structure of the postsynthetically modified nanocrystal. This work provides a framework for achieving defect-free CdSe nanocrystals.

7.
J Am Chem Soc ; 146(6): 3742-3754, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38316637

RESUMEN

Cobalt polypyridyl complexes stand out as efficient catalysts for electrochemical proton reduction, but investigations into their operating mechanisms, with broad-reaching implications in catalyst design, have been limited. Herein, we investigate the catalytic activity of a cobalt(II) polypyridyl complex bearing a pendant pyridyl base with a series of organic acids spanning 20 pKa units in acetonitrile. Structural analysis, as well as electrochemical studies, reveals that the Co(III) hydride intermediate is formed through reduction of the Co(II) catalyst followed by direct metal protonation in the initial EC step despite the presence of the pendant base, which is commonly thought of as a more kinetically accessible protonation site. Protonation of the pendant base occurs after the Co(III) hydride intermediate is further reduced in the overall ECEC pathway. Additionally, when the acid used is sufficiently strong, the Co(II) catalyst can be protonated, and the Co(III) hydride can react directly with acid to release H2. With thorough mechanistic understanding, the appropriate electroanalytical methods were identified to extract rate constants for the elementary steps over a range of conditions. Thermodynamic square schemes relating catalytic intermediates proposed in the three electrocatalytic HER mechanisms were constructed. These findings reveal a full description of the HER electrocatalysis mediated by this molecular system and provide insights into strategies to improve synthetic fuel-forming catalysts operative through metal hydride intermediates.

8.
Inorg Chem ; 63(4): 1858-1866, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38226604

RESUMEN

The electronic structure and photophysics of two low spin metallocenes, decamethylmanganocene (MnCp*2) and decamethylrhenocene (ReCp*2), were investigated to probe their promise as photoredox reagents. Computational studies support the assignment of 2E2 ground state configurations and low energy ligand-to-metal charge transfer transitions for both complexes. Weak emission is observed at room temperature for ReCp*2 with τ = 1.8 ns in pentane, whereas MnCp*2 is not emissive. Calculation of the excited state reduction potentials for both metallocenes reveal their potential potency as excited state reductants (E°'([MnCp*2]+/0*) = -3.38 V and E°'([ReCp*2]+/0*) = -2.61 V vs Fc+/0). Comparatively, both complexes exhibit mild potentials for photo-oxidative processes (E°'([MnCp*2]0*/-) = -0.18 V and E°'([ReCp*2]0*/-) = -0.20 V vs Fc+/0). These results showcase the rich electronic structure of low spin d5 metallocenes and their promise as excited state reductants.

9.
Chem Soc Rev ; 52(20): 7137-7169, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37750006

RESUMEN

Proton transfer reactions involving transition metal hydride complexes are prevalent in a number of catalytic fuel-forming reactions, where the proton transfer kinetics to or from the metal center can have significant impacts on the efficiency, selectivity, and stability associated with the catalytic cycle. This review correlates the often slow proton transfer rate constants of transition metal hydride complexes to their electronic and structural descriptors and provides perspective on how to exploit these parameters to control proton transfer kinetics to and from the metal center. A toolbox of techniques for experimental determination of proton transfer rate constants is discussed, and case studies where proton transfer rate constant determination informs fuel-forming reactions are highlighted. Opportunities for extending proton transfer kinetic measurements to additional systems are presented, and the importance of synergizing the thermodynamics and kinetics of proton transfer involving transition metal hydride complexes is emphasized.

10.
Acc Chem Res ; 56(13): 1744-1755, 2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37307510

RESUMEN

ConspectusMany desirable and undesirable properties of semiconductor nanocrystals (NCs) can be traced to the NC surface due to the large surface-to-volume ratio. Therefore, precise control of the NC surface is imperative to achieve NCs with the desired qualities. Ligand-specific reactivity and surface heterogeneity make it difficult to accurately control and tune the NC surface. Without a molecular-level appreciation of the NC surface chemistry, modulating the NC surface is impossible and the risk of introducing deleterious surface defects is imminent. To gain a more comprehensive understanding of the surface reactivity, we have utilized a variety of spectroscopic techniques and analytical methods in concert.This Account describes our use of robust characterization techniques and ligand exchange reactions in effort to establish a molecular-level understanding of NC surface reactivity. The utility of NCs in target applications such as catalysis and charge transfer hangs on precise tunability of NC ligands. Modulating the NC surface requires the necessary tools to monitor chemical reactions. One commonly utilized analytical method to achieve targeted surface compositions is 1H nuclear magnetic resonance (NMR) spectroscopy. Here we describe our use of 1H NMR spectroscopy to monitor chemical reactions at CdSe and PbS NC surfaces to identify ligand specific reactivity. However, seemingly straightforward ligand exchange reactions can vary widely depending on the NC materials and anchoring group. Some non-native X-type ligands will irreversibly displace native ligands. Other ligands exist in equilibrium with native ligands. Depending on the application, it is important to understand the nature of exchange reactions. This level of understanding can be obtained by extracting exchange ratios, exchange equilibrium, and reaction mechanism information from 1H NMR spectroscopy to establish precise NC reactivity.Reactivity that occurs through multiple, parallel ligand exchange mechanisms can involve both the liberation of metal-based Z-type ligands in addition to reactivity of X-type ligands. In these reactions, 1H NMR spectroscopy fails to discern between an X-type oleate or a Z-type Pb(oleate)2 because only the alkene resonance of the organic constituent is probed by this method. Multiple, parallel reaction pathways occur when thiol ligands are introduced to oleate-capped PbS NCs. This necessitated the use of synergistic characterization methods including 1H NMR spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, and inductively coupled plasma mass spectrometry (ICP-MS) to characterize both surface-bound and liberated ligands.Similar analytical methods have been employed to probe the NC topology, which is an important, but often overlooked, component to NC reactivity given the facet-specific reactivity of PbS NCs. Through the tandem use of NMR spectroscopy and ICP-MS, we have monitored the liberation of Pb(oleate)2 as an L-type ligand is titrated to the NC to determine the quantity and equilibrium of Z-type ligands. By studying a variety of NC sizes, we correlated the number of liberated ligands with the size-dependent topology of PbS NCs.Lastly, we incorporate redox-active chemical probes into our toolbox to study NC surface defects. We describe how the site-specific reactivity and relative energetics of redox-active surface-based defects are elucidated using redox probes and show that this reactivity is highly dependent on the surface composition. This Account is designed to encourage readers to consider the necessary characterization techniques needed establish a molecular-level understanding of NC surfaces in their own work.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...