Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Genome Biol ; 24(1): 192, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37612728

RESUMEN

BACKGROUND: Hundreds of functional genomic screens have been performed across a diverse set of cancer contexts, as part of efforts such as the Cancer Dependency Map, to identify gene dependencies-genes whose loss of function reduces cell viability or fitness. Recently, large-scale screening efforts have shifted from RNAi to CRISPR-Cas9, due to superior efficacy and specificity. However, many effective oncology drugs only partially inhibit their protein targets, leading us to question whether partial suppression of genes using RNAi could reveal cancer vulnerabilities that are missed by complete knockout using CRISPR-Cas9. Here, we compare CRISPR-Cas9 and RNAi dependency profiles of genes across approximately 400 matched cancer cell lines. RESULTS: We find that CRISPR screens accurately identify more gene dependencies per cell line, but the majority of each cell line's dependencies are part of a set of 1867 genes that are shared dependencies across the entire collection (pan-lethals). While RNAi knockdown of about 30% of these genes is also pan-lethal, approximately 50% have selective dependency patterns across cell lines, suggesting they could still be cancer vulnerabilities. The accuracy of the unique RNAi selectivity is supported by associations to multi-omics profiles, drug sensitivity, and other expected co-dependencies. CONCLUSIONS: Incorporating RNAi data for genes that are pan-lethal knockouts facilitates the discovery of a wider range of gene targets than could be detected using the CRISPR dataset alone. This can aid in the interpretation of contrasting results obtained from CRISPR and RNAi screens and reinforce the importance of partial gene suppression methods in building a cancer dependency map.


Asunto(s)
Sistemas CRISPR-Cas , Neoplasias , Humanos , Neoplasias/genética , Técnicas Genéticas , Interferencia de ARN , Línea Celular
2.
Nat Cancer ; 4(5): 754-773, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37237081

RESUMEN

Clinical progress in multiple myeloma (MM), an incurable plasma cell (PC) neoplasia, has been driven by therapies that have limited applications beyond MM/PC neoplasias and do not target specific oncogenic mutations in MM. Instead, these agents target pathways critical for PC biology yet largely dispensable for malignant or normal cells of most other lineages. Here we systematically characterized the lineage-preferential molecular dependencies of MM through genome-scale clustered regularly interspaced short palindromic repeats (CRISPR) studies in 19 MM versus hundreds of non-MM lines and identified 116 genes whose disruption more significantly affects MM cell fitness compared with other malignancies. These genes, some known, others not previously linked to MM, encode transcription factors, chromatin modifiers, endoplasmic reticulum components, metabolic regulators or signaling molecules. Most of these genes are not among the top amplified, overexpressed or mutated in MM. Functional genomics approaches thus define new therapeutic targets in MM not readily identifiable by standard genomic, transcriptional or epigenetic profiling analyses.


Asunto(s)
Mieloma Múltiple , Humanos , Mieloma Múltiple/genética , Genómica , Genoma , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética
3.
Nat Commun ; 14(1): 1933, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-37024492

RESUMEN

Identifying the spectrum of genes required for cancer cell survival can reveal essential cancer circuitry and therapeutic targets, but such a map remains incomplete for many cancer types. We apply genome-scale CRISPR-Cas9 loss-of-function screens to map the landscape of selectively essential genes in chordoma, a bone cancer with few validated targets. This approach confirms a known chordoma dependency, TBXT (T; brachyury), and identifies a range of additional dependencies, including PTPN11, ADAR, PRKRA, LUC7L2, SRRM2, SLC2A1, SLC7A5, FANCM, and THAP1. CDK6, SOX9, and EGFR, genes previously implicated in chordoma biology, are also recovered. We find genomic and transcriptomic features that predict specific dependencies, including interferon-stimulated gene expression, which correlates with ADAR dependence and is elevated in chordoma. Validating the therapeutic relevance of dependencies, small-molecule inhibitors of SHP2, encoded by PTPN11, have potent preclinical efficacy against chordoma. Our results generate an emerging map of chordoma dependencies to enable biological and therapeutic hypotheses.


Asunto(s)
Neoplasias Óseas , Cordoma , Humanos , Cordoma/genética , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Genes Esenciales , Perfilación de la Expresión Génica , Transcriptoma , Línea Celular Tumoral , Proteínas de Unión al ADN/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , ADN Helicasas/metabolismo
4.
Cancer Discov ; 13(3): 766-795, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36576405

RESUMEN

Systematic identification of signaling pathways required for the fitness of cancer cells will facilitate the development of new cancer therapies. We used gene essentiality measurements in 1,086 cancer cell lines to identify selective coessentiality modules and found that a ubiquitin ligase complex composed of UBA6, BIRC6, KCMF1, and UBR4 is required for the survival of a subset of epithelial tumors that exhibit a high degree of aneuploidy. Suppressing BIRC6 in cell lines that are dependent on this complex led to a substantial reduction in cell fitness in vitro and potent tumor regression in vivo. Mechanistically, BIRC6 suppression resulted in selective activation of the integrated stress response (ISR) by stabilization of the heme-regulated inhibitor, a direct ubiquitination target of the UBA6/BIRC6/KCMF1/UBR4 complex. These observations uncover a novel ubiquitination cascade that regulates ISR and highlight the potential of ISR activation as a new therapeutic strategy. SIGNIFICANCE: We describe the identification of a heretofore unrecognized ubiquitin ligase complex that prevents the aberrant activation of the ISR in a subset of cancer cells. This provides a novel insight on the regulation of ISR and exposes a therapeutic opportunity to selectively eliminate these cancer cells. See related commentary Leli and Koumenis, p. 535. This article is highlighted in the In This Issue feature, p. 517.


Asunto(s)
Carcinoma , Humanos , Ubiquitinación , Línea Celular , Transducción de Señal , Ubiquitinas
5.
Cancer Discov ; 12(12): 2880-2905, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36305736

RESUMEN

Diffuse midline gliomas are uniformly fatal pediatric central nervous system cancers that are refractory to standard-of-care therapeutic modalities. The primary genetic drivers are a set of recurrent amino acid substitutions in genes encoding histone H3 (H3K27M), which are currently undruggable. These H3K27M oncohistones perturb normal chromatin architecture, resulting in an aberrant epigenetic landscape. To interrogate for epigenetic dependencies, we performed a CRISPR screen and show that patient-derived H3K27M-glioma neurospheres are dependent on core components of the mammalian BAF (SWI/SNF) chromatin remodeling complex. The BAF complex maintains glioma stem cells in a cycling, oligodendrocyte precursor cell-like state, in which genetic perturbation of the BAF catalytic subunit SMARCA4 (BRG1), as well as pharmacologic suppression, opposes proliferation, promotes progression of differentiation along the astrocytic lineage, and improves overall survival of patient-derived xenograft models. In summary, we demonstrate that therapeutic inhibition of the BAF complex has translational potential for children with H3K27M gliomas. SIGNIFICANCE: Epigenetic dysregulation is at the core of H3K27M-glioma tumorigenesis. Here, we identify the BRG1-BAF complex as a critical regulator of enhancer and transcription factor landscapes, which maintain H3K27M glioma in their progenitor state, precluding glial differentiation, and establish pharmacologic targeting of the BAF complex as a novel treatment strategy for pediatric H3K27M glioma. See related commentary by Beytagh and Weiss, p. 2730. See related article by Mo et al., p. 2906.


Asunto(s)
Epigenoma , Glioma , Animales , Humanos , Mutación , Glioma/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Células Madre Neoplásicas/metabolismo , Mamíferos/genética , Mamíferos/metabolismo , ADN Helicasas/genética , Proteínas Nucleares/genética
6.
Blood Cancer Discov ; 3(5): 394-409, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-35709529

RESUMEN

Relapse of acute myeloid leukemia (AML) after allogeneic bone marrow transplantation has been linked to immune evasion due to reduced expression of major histocompatibility complex class II (MHCII) genes through unknown mechanisms. In this work, we developed CORENODE, a computational algorithm for genome-wide transcription network decomposition that identified a transcription factor (TF) tetrad consisting of IRF8, MYB, MEF2C, and MEIS1, regulating MHCII expression in AML cells. We show that reduced MHCII expression at relapse is transcriptionally driven by combinatorial changes in the expression of these TFs, where MYB and IRF8 play major opposing roles, acting independently of the IFNγ/CIITA pathway. Beyond the MHCII genes, MYB and IRF8 antagonistically regulate a broad genetic program responsible for cytokine signaling and T-cell stimulation that displays reduced expression at relapse. A small number of cells with altered TF abundance and silenced MHCII expression are present at the time of initial leukemia diagnosis, likely contributing to eventual relapse. SIGNIFICANCE: Our findings point to an adaptive transcriptional mechanism of AML evolution after allogeneic transplantation whereby combinatorial fluctuations of TF expression under immune pressure result in the selection of cells with a silenced T-cell stimulation program. This article is highlighted in the In This Issue feature, p. 369.


Asunto(s)
Leucemia Mieloide Aguda , Antígenos de Histocompatibilidad Clase II/genética , Humanos , Factores Reguladores del Interferón , Leucemia Mieloide Aguda/genética , Recurrencia , Trasplante Homólogo
7.
Nat Commun ; 13(1): 2469, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35513429

RESUMEN

Combinatorial CRISPR technologies have emerged as a transformative approach to systematically probe genetic interactions and dependencies of redundant gene pairs. However, the performance of different functional genomic tools for multiplexing sgRNAs vary widely. Here, we generate and benchmark ten distinct pooled combinatorial CRISPR libraries targeting paralog pairs to optimize digenic knockout screens. Libraries composed of dual Streptococcus pyogenes Cas9 (spCas9), orthogonal spCas9 and Staphylococcus aureus (saCas9), and enhanced Cas12a from Acidaminococcus were evaluated. We demonstrate a combination of alternative tracrRNA sequences from spCas9 consistently show superior effect size and positional balance between the sgRNAs as a robust combinatorial approach to profile genetic interactions of multiple genes.


Asunto(s)
Acidaminococcus , Sistemas CRISPR-Cas , Acidaminococcus/genética , Sistemas CRISPR-Cas/genética , ARN Guía de Kinetoplastida/genética , Staphylococcus aureus/genética , Streptococcus pyogenes/genética
8.
Nat Cancer ; 3(6): 681-695, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35437317

RESUMEN

Despite advances in precision medicine, the clinical prospects for patients with ovarian and uterine cancers have not substantially improved. Here, we analyzed genome-scale CRISPR-Cas9 loss-of-function screens across 851 human cancer cell lines and found that frequent overexpression of SLC34A2-encoding a phosphate importer-is correlated with sensitivity to loss of the phosphate exporter XPR1, both in vitro and in vivo. In patient-derived tumor samples, we observed frequent PAX8-dependent overexpression of SLC34A2, XPR1 copy number amplifications and XPR1 messenger RNA overexpression. Mechanistically, in SLC34A2-high cancer cell lines, genetic or pharmacologic inhibition of XPR1-dependent phosphate efflux leads to the toxic accumulation of intracellular phosphate. Finally, we show that XPR1 requires the novel partner protein KIDINS220 for proper cellular localization and activity, and that disruption of this protein complex results in acidic "vacuolar" structures preceding cell death. These data point to the XPR1-KIDINS220 complex and phosphate dysregulation as a therapeutic vulnerability in ovarian cancer.


Asunto(s)
Proteínas de la Membrana , Proteínas del Tejido Nervioso , Neoplasias Ováricas , Femenino , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Fosfatos/farmacología , Receptores Acoplados a Proteínas G/genética , Receptores Virales/genética , Receptor de Retrovirus Xenotrópico y Politrópico/genética , Receptor de Retrovirus Xenotrópico y Politrópico/metabolismo
9.
Genes Dev ; 36(5-6): 368-389, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35301220

RESUMEN

Acute myeloid leukemia with KMT2A (MLL) rearrangements is characterized by specific patterns of gene expression and enhancer architecture, implying unique core transcriptional regulatory circuitry. Here, we identified the transcription factors MEF2D and IRF8 as selective transcriptional dependencies of KMT2A-rearranged AML, where MEF2D displays partially redundant functions with its paralog, MEF2C. Rapid transcription factor degradation followed by measurements of genome-wide transcription rates and superresolution microscopy revealed that MEF2D and IRF8 form a distinct core regulatory module with a narrow direct transcriptional program that includes activation of the key oncogenes MYC, HOXA9, and BCL2. Our study illustrates a mechanism of context-specific transcriptional addiction whereby a specific AML subclass depends on a highly specialized core regulatory module to directly enforce expression of common leukemia oncogenes.


Asunto(s)
Leucemia Mieloide Aguda , Proteína de la Leucemia Mieloide-Linfoide , Reordenamiento Génico , Humanos , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Leucemia Mieloide Aguda/genética , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Oncogenes/genética
10.
Genome Biol ; 22(1): 343, 2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34930405

RESUMEN

CRISPR loss of function screens are powerful tools to interrogate biology but exhibit a number of biases and artifacts that can confound the results. Here, we introduce Chronos, an algorithm for inferring gene knockout fitness effects based on an explicit model of cell proliferation dynamics after CRISPR gene knockout. We test Chronos on two pan-cancer CRISPR datasets and one longitudinal CRISPR screen. Chronos generally outperforms competitors in separation of controls and strength of biomarker associations, particularly when longitudinal data is available. Additionally, Chronos exhibits the lowest copy number and screen quality bias of evaluated methods. Chronos is available at https://github.com/broadinstitute/chronos .


Asunto(s)
Sistemas CRISPR-Cas , Biología Computacional , Genoma , Dinámica Poblacional , Algoritmos , Biomarcadores de Tumor/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Técnicas de Inactivación de Genes , Biblioteca de Genes , Humanos , Neoplasias/genética
11.
Cancer Discov ; 11(9): 2282-2299, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33883167

RESUMEN

Cancer dependency maps, which use CRISPR/Cas9 depletion screens to profile the landscape of genetic dependencies in hundreds of cancer cell lines, have identified context-specific dependencies that could be therapeutically exploited. An ideal therapy is both lethal and precise, but these depletion screens cannot readily distinguish between gene effects that are cytostatic or cytotoxic. Here, we use a diverse panel of functional genomic screening assays to identify NXT1 as a selective and rapidly lethal in vivo relevant genetic dependency in MYCN-amplified neuroblastoma. NXT1 heterodimerizes with NXF1, and together they form the principal mRNA nuclear export machinery. We describe a previously unrecognized mechanism of synthetic lethality between NXT1 and its paralog NXT2: their common essential binding partner NXF1 is lost only in the absence of both. We propose a potential therapeutic strategy for tumor-selective elimination of a protein that, if targeted directly, is expected to cause widespread toxicity. SIGNIFICANCE: We provide a framework for identifying new therapeutic targets from functional genomic screens. We nominate NXT1 as a selective lethal target in neuroblastoma and propose a therapeutic approach where the essential protein NXF1 can be selectively eliminated in tumor cells by exploiting the NXT1-NXT2 paralog relationship.See related commentary by Wang and Abdel-Wahab, p. 2129.This article is highlighted in the In This Issue feature, p. 2113.


Asunto(s)
Neoplasias/tratamiento farmacológico , Proteínas de Transporte Nucleocitoplasmático/genética , Línea Celular Tumoral , Humanos , Neoplasias/genética
12.
Nat Genet ; 53(4): 529-538, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33753930

RESUMEN

Exciting therapeutic targets are emerging from CRISPR-based screens of high mutational-burden adult cancers. A key question, however, is whether functional genomic approaches will yield new targets in pediatric cancers, known for remarkably few mutations, which often encode proteins considered challenging drug targets. To address this, we created a first-generation pediatric cancer dependency map representing 13 pediatric solid and brain tumor types. Eighty-two pediatric cancer cell lines were subjected to genome-scale CRISPR-Cas9 loss-of-function screening to identify genes required for cell survival. In contrast to the finding that pediatric cancers harbor fewer somatic mutations, we found a similar complexity of genetic dependencies in pediatric cancer cell lines compared to that in adult models. Findings from the pediatric cancer dependency map provide preclinical support for ongoing precision medicine clinical trials. The vulnerabilities observed in pediatric cancers were often distinct from those in adult cancer, indicating that repurposing adult oncology drugs will be insufficient to address childhood cancers.


Asunto(s)
Mapeo Cromosómico/métodos , Regulación Neoplásica de la Expresión Génica , Genoma Humano , Mutación , Proteínas de Neoplasias/genética , Neoplasias/genética , Adulto , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas , Línea Celular Tumoral , Niño , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Edición Génica , Perfilación de la Expresión Génica , Predisposición Genética a la Enfermedad , Humanos , Proteínas de Neoplasias/clasificación , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo
13.
Nat Commun ; 12(1): 1661, 2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33712601

RESUMEN

CRISPR-Cas9 viability screens are increasingly performed at a genome-wide scale across large panels of cell lines to identify new therapeutic targets for precision cancer therapy. Integrating the datasets resulting from these studies is necessary to adequately represent the heterogeneity of human cancers and to assemble a comprehensive map of cancer genetic vulnerabilities. Here, we integrated the two largest public independent CRISPR-Cas9 screens performed to date (at the Broad and Sanger institutes) by assessing, comparing, and selecting methods for correcting biases due to heterogeneous single-guide RNA efficiency, gene-independent responses to CRISPR-Cas9 targeting originated from copy number alterations, and experimental batch effects. Our integrated datasets recapitulate findings from the individual datasets, provide greater statistical power to cancer- and subtype-specific analyses, unveil additional biomarkers of gene dependency, and improve the detection of common essential genes. We provide the largest integrated resources of CRISPR-Cas9 screens to date and the basis for harmonizing existing and future functional genetics datasets.


Asunto(s)
Neoplasias/genética , Biomarcadores de Tumor , Sistemas CRISPR-Cas , Línea Celular Tumoral , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Variaciones en el Número de Copia de ADN , Genes Esenciales/genética , Genómica/métodos , Humanos , ARN Guía de Kinetoplastida/genética
14.
Nat Biotechnol ; 39(6): 697-704, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33510483

RESUMEN

Although genomic analyses predict many noncanonical open reading frames (ORFs) in the human genome, it is unclear whether they encode biologically active proteins. Here we experimentally interrogated 553 candidates selected from noncanonical ORF datasets. Of these, 57 induced viability defects when knocked out in human cancer cell lines. Following ectopic expression, 257 showed evidence of protein expression and 401 induced gene expression changes. Clustered regularly interspaced short palindromic repeat (CRISPR) tiling and start codon mutagenesis indicated that their biological effects required translation as opposed to RNA-mediated effects. We found that one of these ORFs, G029442-renamed glycine-rich extracellular protein-1 (GREP1)-encodes a secreted protein highly expressed in breast cancer, and its knockout in 263 cancer cell lines showed preferential essentiality in breast cancer-derived lines. The secretome of GREP1-expressing cells has an increased abundance of the oncogenic cytokine GDF15, and GDF15 supplementation mitigated the growth-inhibitory effect of GREP1 knockout. Our experiments suggest that noncanonical ORFs can express biologically active proteins that are potential therapeutic targets.


Asunto(s)
Supervivencia Celular/fisiología , Proteínas de Neoplasias/genética , Neoplasias/patología , Línea Celular Tumoral , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Células HEK293 , Humanos , Proteínas de Neoplasias/fisiología , Neoplasias/genética , Sistemas de Lectura Abierta
15.
Nat Commun ; 10(1): 5817, 2019 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-31862961

RESUMEN

Genome-scale CRISPR-Cas9 viability screens performed in cancer cell lines provide a systematic approach to identify cancer dependencies and new therapeutic targets. As multiple large-scale screens become available, a formal assessment of the reproducibility of these experiments becomes necessary. We analyze data from recently published pan-cancer CRISPR-Cas9 screens performed at the Broad and Sanger Institutes. Despite significant differences in experimental protocols and reagents, we find that the screen results are highly concordant across multiple metrics with both common and specific dependencies jointly identified across the two studies. Furthermore, robust biomarkers of gene dependency found in one data set are recovered in the other. Through further analysis and replication experiments at each institute, we show that batch effects are driven principally by two key experimental parameters: the reagent library and the assay length. These results indicate that the Broad and Sanger CRISPR-Cas9 viability screens yield robust and reproducible findings.


Asunto(s)
Biomarcadores de Tumor/genética , Sistemas CRISPR-Cas/genética , Ensayos de Selección de Medicamentos Antitumorales/métodos , Genómica/métodos , Neoplasias/genética , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Biomarcadores de Tumor/antagonistas & inhibidores , Línea Celular Tumoral , Conjuntos de Datos como Asunto , Perfilación de la Expresión Génica , Genes Esenciales/efectos de los fármacos , Genes Esenciales/genética , Humanos , Terapia Molecular Dirigida/métodos , Neoplasias/tratamiento farmacológico , Oncogenes/efectos de los fármacos , Oncogenes/genética , Medicina de Precisión/métodos , Reproducibilidad de los Resultados , Bibliotecas de Moléculas Pequeñas/farmacología
16.
Cell Rep ; 29(1): 118-134.e8, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31577942

RESUMEN

The mitogen-activated protein kinase (MAPK) pathway is a critical effector of oncogenic RAS signaling, and MAPK pathway inhibition may be an effective combination treatment strategy. We performed genome-scale loss-of-function CRISPR-Cas9 screens in the presence of a MEK1/2 inhibitor (MEKi) in KRAS-mutant pancreatic and lung cancer cell lines and identified genes that cooperate with MEK inhibition. While we observed heterogeneity in genetic modifiers of MEKi sensitivity across cell lines, several recurrent classes of synthetic lethal vulnerabilities emerged at the pathway level. Multiple members of receptor tyrosine kinase (RTK)-RAS-MAPK pathways scored as sensitizers to MEKi. In particular, we demonstrate that knockout, suppression, or degradation of SHOC2, a positive regulator of MAPK signaling, specifically cooperated with MEK inhibition to impair proliferation in RAS-driven cancer cells. The depletion of SHOC2 disrupted survival pathways triggered by feedback RTK signaling in response to MEK inhibition. Thus, these findings nominate SHOC2 as a potential target for combination therapy.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Neoplasias/metabolismo , Proteínas ras/metabolismo , Células A549 , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/fisiología , Células HCT116 , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Ratones Pelados , Ratones SCID , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
17.
Nat Commun ; 9(1): 4610, 2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30389920

RESUMEN

The availability of multiple datasets comprising genome-scale RNAi viability screens in hundreds of diverse cancer cell lines presents new opportunities for understanding cancer vulnerabilities. Integrated analyses of these data to assess differential dependency across genes and cell lines are challenging due to confounding factors such as batch effects and variable screen quality, as well as difficulty assessing gene dependency on an absolute scale. To address these issues, we incorporated cell line screen-quality parameters and hierarchical Bayesian inference into DEMETER2, an analytical framework for analyzing RNAi screens ( https://depmap.org/R2-D2 ). This model substantially improves estimates of gene dependency across a range of performance measures, including identification of gold-standard essential genes and agreement with CRISPR/Cas9-based viability screens. It also allows us to integrate information across three large RNAi screening datasets, providing a unified resource representing the most extensive compilation of cancer cell line genetic dependencies to date.


Asunto(s)
Pruebas Genéticas , Modelos Genéticos , Neoplasias/genética , Interferencia de ARN , Genes Esenciales , Humanos , Programas Informáticos
18.
Phys Rev E ; 95(5-1): 052606, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28618507

RESUMEN

Flexible superparamagnetic filaments are studied under the influence of fast precessing magnetic fields using simulations and a continuum approximation analysis. We find that individual filaments can be made to exert controllable tensile forces along the precession axis. These forces are exploited for microscopic actuation. In bulk, the filaments can be rapidly assembled into different configurations whose material properties depend on the field parameters. The precession frequency affects filament aggregation and conformation by changing the net torques on the filament ends. Using a time-dependent precession angle allows considerable freedom in choosing properties for filament aggregates. As an example, we design a field that twists chains together to dynamically assemble a self-healing gel.

19.
ACS Nano ; 10(6): 5909-15, 2016 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-27253725

RESUMEN

Patchy colloids are attractive as programmable building blocks for metamaterials. Inverse patchy colloids, in which a charged surface is decorated with patches of the opposite charge, are additionally noteworthy as models for heterogeneously charged biological materials such as proteins. We study the phases and aggregation behavior of a single charged patch in an oppositely charged colloid with a single-site model. This single-patch inverse patchy colloid model shows a large number of phases when varying patch size. For large patch sizes we find ferroelectric crystals, while small patch sizes produce cross-linked gels. Intermediate values produce monodisperse clusters and unusual worm structures that preserve finite ratios of area to volume. The polarization observed at large patch sizes is robust under extreme disorder in patch size and shape. We examine phase-temperature dependence and coexistence curves and find that large patch sizes produce polarized liquids, in contrast to mean-field predictions. Finally, we introduce small numbers of unpatched charged colloids. These can either suppress or encourage aggregation depending on their concentration and the size of the patches on the patched colloids. These effects can be exploited to control aggregation and to measure effective patch size.

20.
Artículo en Inglés | MEDLINE | ID: mdl-26565238

RESUMEN

Colloidal self-replication represents an exciting research frontier in soft matter physics. Currently, all reported self-replication schemes involve coating colloidal particles with stimuli-responsive molecules to allow switchable interactions. In this paper, we introduce a scheme using ferromagnetic dipolar colloids and preprogrammed external magnetic fields to create an autonomous self-replication system. Interparticle dipole-dipole forces and periodically varying weak-strong magnetic fields cooperate to drive colloid monomers from the solute onto templates, bind them into replicas, and dissolve template complexes. We present three general design principles for autonomous linear replicators, derived from a focused study of a minimalist sphere-dimer magnetic system in which single binding sites allow formation of dimeric templates. We show via statistical models and computer simulations that our system exhibits nonlinear growth of templates and produces nearly exponential growth (low error rate) upon adding an optimized competing electrostatic potential. We devise experimental strategies for constructing the required magnetic colloids based on documented laboratory techniques. We also present qualitative ideas about building more complex self-replicating structures utilizing magnetic colloids.


Asunto(s)
Coloides/química , Fenómenos Magnéticos , Modelos Moleculares , Dimerización , Conformación Molecular , Electricidad Estática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA