Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Hortic Res ; 8(1): 202, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34465774

RESUMEN

Pedigree information is of fundamental importance in breeding programs and related genetics efforts. However, many individuals have unknown pedigrees. While methods to identify and confirm direct parent-offspring relationships are routine, those for other types of close relationships have yet to be effectively and widely implemented with plants, due to complications such as asexual propagation and extensive inbreeding. The objective of this study was to develop and demonstrate methods that support complex pedigree reconstruction via the total length of identical by state haplotypes (referred to in this study as "summed potential lengths of shared haplotypes", SPLoSH). A custom Python script, HapShared, was developed to generate SPLoSH data in apple and sweet cherry. HapShared was used to establish empirical distributions of SPLoSH data for known relationships in these crops. These distributions were then used to estimate previously unknown relationships. Case studies in each crop demonstrated various pedigree reconstruction scenarios using SPLoSH data. For cherry, a full-sib relationship was deduced for 'Emperor Francis, and 'Schmidt', a half-sib relationship for 'Van' and 'Windsor', and the paternal grandparents of 'Stella' were confirmed. For apple, 29 cultivars were found to share an unknown parent, the pedigree of the unknown parent of 'Cox's Pomona' was reconstructed, and 'Fameuse' was deduced to be a likely grandparent of 'McIntosh'. Key genetic resources that enabled this empirical study were large genome-wide SNP array datasets, integrated genetic maps, and previously identified pedigree relationships. Crops with similar resources are also expected to benefit from using HapShared for empowering pedigree reconstruction.

2.
BMC Genomics ; 22(1): 246, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33827434

RESUMEN

BACKGROUND: Single nucleotide polymorphism (SNP) array technology has been increasingly used to generate large quantities of SNP data for use in genetic studies. As new arrays are developed to take advantage of new technology and of improved probe design using new genome sequence and panel data, a need to integrate data from different arrays and array platforms has arisen. This study was undertaken in view of our need for an integrated high-quality dataset of Illumina Infinium® 20 K and Affymetrix Axiom® 480 K SNP array data in apple (Malus × domestica). In this study, we qualify and quantify the compatibility of SNP calling, defined as SNP calls that are both accurate and concordant, across both arrays by two approaches. First, the concordance of SNP calls was evaluated using a set of 417 duplicate individuals genotyped on both arrays starting from a set of 10,295 robust SNPs on the Infinium array. Next, the accuracy of the SNP calls was evaluated on additional germplasm (n = 3141) from both arrays using Mendelian inconsistent and consistent errors across thousands of pedigree links. While performing this work, we took the opportunity to evaluate reasons for probe failure and observed discordant SNP calls. RESULTS: Concordance among the duplicate individuals was on average of 97.1% across 10,295 SNPs. Of these SNPs, 35% had discordant call(s) that were further curated, leading to a final set of 8412 (81.7%) SNPs that were deemed compatible. Compatibility was highly influenced by the presence of alternate probe binding locations and secondary polymorphisms. The impact of the latter was highly influenced by their number and proximity to the 3' end of the probe. CONCLUSIONS: The Infinium and Axiom SNP array data were mostly compatible. However, data integration required intense data filtering and curation. This work resulted in a workflow and information that may be of use in other data integration efforts. Such an in-depth analysis of array concordance and accuracy as ours has not been previously described in the literature and will be useful in future work on SNP array data integration and interpretation, and in probe/platform development.


Asunto(s)
Malus , Genoma , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Malus/genética , Polimorfismo de Nucleótido Simple
3.
Hortic Res ; 7(1): 189, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-33328447

RESUMEN

Breeding of apple is a long-term and costly process due to the time and space requirements for screening selection candidates. Genomics-assisted breeding utilizes genomic and phenotypic information to increase the selection efficiency in breeding programs, and measurements of phenotypes in different environments can facilitate the application of the approach under various climatic conditions. Here we present an apple reference population: the apple REFPOP, a large collection formed of 534 genotypes planted in six European countries, as a unique tool to accelerate apple breeding. The population consisted of 269 accessions and 265 progeny from 27 parental combinations, representing the diversity in cultivated apple and current European breeding material, respectively. A high-density genome-wide dataset of 303,239 SNPs was produced as a combined output of two SNP arrays of different densities using marker imputation with an imputation accuracy of 0.95. Based on the genotypic data, linkage disequilibrium was low and population structure was weak. Two well-studied phenological traits of horticultural importance were measured. We found marker-trait associations in several previously identified genomic regions and maximum predictive abilities of 0.57 and 0.75 for floral emergence and harvest date, respectively. With decreasing SNP density, the detection of significant marker-trait associations varied depending on trait architecture. Regardless of the trait, 10,000 SNPs sufficed to maximize genomic prediction ability. We confirm the suitability of the apple REFPOP design for genomics-assisted breeding, especially for breeding programs using related germplasm, and emphasize the advantages of a coordinated and multinational effort for customizing apple breeding methods in the genomics era.

4.
BMC Plant Biol ; 20(1): 2, 2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31898487

RESUMEN

BACKGROUND: Apple (Malus x domestica Borkh.) is one of the most important fruit tree crops of temperate areas, with great economic and cultural value. Apple cultivars can be maintained for centuries in plant collections through grafting, and some are thought to date as far back as Roman times. Molecular markers provide a means to reconstruct pedigrees and thus shed light on the recent history of migration and trade of biological materials. The objective of the present study was to identify relationships within a set of over 1400 mostly old apple cultivars using whole-genome SNP data (~ 253 K SNPs) in order to reconstruct pedigrees. RESULTS: Using simple exclusion tests, based on counting the number of Mendelian errors, more than one thousand parent-offspring relations and 295 complete parent-offspring families were identified. Additionally, a grandparent couple was identified for the missing parental side of 26 parent-offspring pairings. Among the 407 parent-offspring relations without a second identified parent, 327 could be oriented because one of the individuals was an offspring in a complete family or by using historical data on parentage or date of recording. Parents of emblematic cultivars such as 'Ribston Pippin', 'White Transparent' and 'Braeburn' were identified. The overall pedigree combining all the identified relationships encompassed seven generations and revealed a major impact of two Renaissance cultivars of French and English origin, namely 'Reinette Franche' and 'Margil', and one North-Eastern Europe cultivar from the 1700s, 'Alexander'. On the contrary, several older cultivars, from the Middle Ages or the Roman times, had no, or only single, identifiable offspring in the set of studied accessions. Frequent crosses between cultivars originating from different European regions were identified, especially from the nineteenth century onwards. CONCLUSIONS: The availability of over 1400 apple genotypes, previously filtered for genetic uniqueness and providing a broad representation of European germplasm, has been instrumental for the success of this large pedigree reconstruction. It enlightens the history of empirical selection and recent breeding of apple cultivars in Europe and provides insights to speed-up future breeding and selection.


Asunto(s)
Genoma de Planta , Malus/genética , Polimorfismo de Nucleótido Simple/genética , Cruzamiento , Europa (Continente) , Genotipo , Técnicas de Genotipaje/métodos , Linaje , Secuenciación Completa del Genoma
5.
Front Plant Sci ; 8: 1923, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29176988

RESUMEN

Deciphering the genetic control of flowering and ripening periods in apple is essential for breeding cultivars adapted to their growing environments. We implemented a large Genome-Wide Association Study (GWAS) at the European level using an association panel of 1,168 different apple genotypes distributed over six locations and phenotyped for these phenological traits. The panel was genotyped at a high-density of SNPs using the Axiom®Apple 480 K SNP array. We ran GWAS with a multi-locus mixed model (MLMM), which handles the putatively confounding effect of significant SNPs elsewhere on the genome. Genomic regions were further investigated to reveal candidate genes responsible for the phenotypic variation. At the whole population level, GWAS retained two SNPs as cofactors on chromosome 9 for flowering period, and six for ripening period (four on chromosome 3, one on chromosome 10 and one on chromosome 16) which, together accounted for 8.9 and 17.2% of the phenotypic variance, respectively. For both traits, SNPs in weak linkage disequilibrium were detected nearby, thus suggesting the existence of allelic heterogeneity. The geographic origins and relationships of apple cultivars accounted for large parts of the phenotypic variation. Variation in genotypic frequency of the SNPs associated with the two traits was connected to the geographic origin of the genotypes (grouped as North+East, West and South Europe), and indicated differential selection in different growing environments. Genes encoding transcription factors containing either NAC or MADS domains were identified as major candidates within the small confidence intervals computed for the associated genomic regions. A strong microsynteny between apple and peach was revealed in all the four confidence interval regions. This study shows how association genetics can unravel the genetic control of important horticultural traits in apple, as well as reduce the confidence intervals of the associated regions identified by linkage mapping approaches. Our findings can be used for the improvement of apple through marker-assisted breeding strategies that take advantage of the accumulating additive effects of the identified SNPs.

6.
Infect Genet Evol ; 44: 541-548, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27431333

RESUMEN

Quantitative plant resistance affects the aggressiveness of pathogens and is usually considered more durable than qualitative resistance. However, the efficiency of a quantitative resistance based on an isolate-specific Quantitative Trait Locus (QTL) is expected to decrease over time due to the selection of isolates with a high level of aggressiveness on resistant plants. To test this hypothesis, we surveyed scab incidence over an eight-year period in an orchard planted with susceptible and quantitatively resistant apple genotypes. We sampled 79 Venturia inaequalis isolates from this orchard at three dates and we tested their level of aggressiveness under controlled conditions. Isolates sampled on resistant genotypes triggered higher lesion density and exhibited a higher sporulation rate on apple carrying the resistance allele of the QTL T1 compared to isolates sampled on susceptible genotypes. Due to this ability to select aggressive isolates, we expected the QTL T1 to be non-durable. However, our results showed that the quantitative resistance based on the QTL T1 remained efficient in orchard over an eight-year period, with only a slow decrease in efficiency and no detectable increase of the aggressiveness of fungal isolates over time. We conclude that knowledge on the specificity of a QTL is not sufficient to evaluate its durability. Deciphering molecular mechanisms associated with resistance QTLs, genetic determinants of aggressiveness and putative trade-offs within pathogen populations is needed to help in understanding the erosion processes.


Asunto(s)
Ascomicetos , Resistencia a la Enfermedad/genética , Malus/genética , Malus/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Sitios de Carácter Cuantitativo , Alelos , Predisposición Genética a la Enfermedad , Genotipo , Incidencia
7.
BMC Plant Biol ; 16(1): 130, 2016 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-27277533

RESUMEN

BACKGROUND: The amount and structure of genetic diversity in dessert apple germplasm conserved at a European level is mostly unknown, since all diversity studies conducted in Europe until now have been performed on regional or national collections. Here, we applied a common set of 16 SSR markers to genotype more than 2,400 accessions across 14 collections representing three broad European geographic regions (North + East, West and South) with the aim to analyze the extent, distribution and structure of variation in the apple genetic resources in Europe. RESULTS: A Bayesian model-based clustering approach showed that diversity was organized in three groups, although these were only moderately differentiated (FST = 0.031). A nested Bayesian clustering approach allowed identification of subgroups which revealed internal patterns of substructure within the groups, allowing a finer delineation of the variation into eight subgroups (FST = 0.044). The first level of stratification revealed an asymmetric division of the germplasm among the three groups, and a clear association was found with the geographical regions of origin of the cultivars. The substructure revealed clear partitioning of genetic groups among countries, but also interesting associations between subgroups and breeding purposes of recent cultivars or particular usage such as cider production. Additional parentage analyses allowed us to identify both putative parents of more than 40 old and/or local cultivars giving interesting insights in the pedigree of some emblematic cultivars. CONCLUSIONS: The variation found at group and subgroup levels may reflect a combination of historical processes of migration/selection and adaptive factors to diverse agricultural environments that, together with genetic drift, have resulted in extensive genetic variation but limited population structure. The European dessert apple germplasm represents an important source of genetic diversity with a strong historical and patrimonial value. The present work thus constitutes a decisive step in the field of conservation genetics. Moreover, the obtained data can be used for defining a European apple core collection useful for further identification of genomic regions associated with commercially important horticultural traits in apple through genome-wide association studies.


Asunto(s)
Flujo Génico , Variación Genética , Malus/genética , Europa (Continente) , Marcadores Genéticos , Estudio de Asociación del Genoma Completo , Genotipo , Malus/clasificación , Malus/embriología , Malus/metabolismo , Repeticiones de Microsatélite , Filogenia
8.
Plant J ; 86(1): 62-74, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26919684

RESUMEN

Cultivated apple (Malus × domestica Borkh.) is one of the most important fruit crops in temperate regions, and has great economic and cultural value. The apple genome is highly heterozygous and has undergone a recent duplication which, combined with a rapid linkage disequilibrium decay, makes it difficult to perform genome-wide association (GWA) studies. Single nucleotide polymorphism arrays offer highly multiplexed assays at a relatively low cost per data point and can be a valid tool for the identification of the markers associated with traits of interest. Here, we describe the development and validation of a 487K SNP Affymetrix Axiom(®) genotyping array for apple and discuss its potential applications. The array has been built from the high-depth resequencing of 63 different cultivars covering most of the genetic diversity in cultivated apple. The SNPs were chosen by applying a focal points approach to enrich genic regions, but also to reach a uniform coverage of non-genic regions. A total of 1324 apple accessions, including the 92 progenies of two mapping populations, have been genotyped with the Axiom(®) Apple480K to assess the effectiveness of the array. A large majority of SNPs (359 994 or 74%) fell in the stringent class of poly high resolution polymorphisms. We also devised a filtering procedure to identify a subset of 275K very robust markers that can be safely used for germplasm surveys in apple. The Axiom(®) Apple480K has now been commercially released both for public and proprietary use and will likely be a reference tool for GWA studies in apple.


Asunto(s)
Genoma de Planta/genética , Técnicas de Genotipaje/métodos , Malus/genética , Polimorfismo de Nucleótido Simple/genética , Mapeo Cromosómico , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Genotipo , Desequilibrio de Ligamiento , Análisis de Secuencia por Matrices de Oligonucleótidos
9.
Infect Genet Evol ; 27: 481-9, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24530903

RESUMEN

Theoretical approaches predict that host quantitative resistance selects for pathogens with a high level of pathogenicity, leading to erosion of the resistance. This process of erosion has, however, rarely been experimentally demonstrated. To investigate the erosion of apple quantitative resistance to scab disease, we surveyed scab incidence over time in a network of three orchards planted with susceptible and quantitatively resistant apple genotypes. We sampled Venturiainaequalis isolates from two of these orchards at the beginning of the experiment and we tested their quantitative components of pathogenicity (i.e., global disease severity, lesion density, lesion size, latent period) under controlled conditions. The disease severity produced by the isolates on the quantitatively resistant apple genotypes differed between the sites. Our study showed that quantitative resistance may be subject to erosion and even complete breakdown, depending on the site. We observed this evolution over time for apple genotypes that combine two broad-spectrum scab resistance QTLs, F11 and F17, showing a significant synergic effect of this combination in favour of resistance (i.e., favourable epistatic effect). We showed that isolates sampled in the orchard where the resistance was inefficient presented a similar level of pathogenicity on both apple genotypes with quantitative resistance and susceptible genotypes. As a consequence, our results revealed a case where the use of quantitative resistance may result in the emergence of a generalist pathogen population that has extended its pathogenicity range by performing similarly on susceptible and resistant genotypes. This emphasizes the need to develop quantitative resistances conducive to trade-offs within the pathogen populations concerned.


Asunto(s)
Ascomicetos , Resistencia a la Enfermedad/genética , Interacciones Huésped-Patógeno/genética , Malus/genética , Malus/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Genotipo , Incidencia
10.
Mol Plant Pathol ; 12(5): 493-505, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21535354

RESUMEN

Fire blight is the most destructive bacterial disease affecting apple (Malus×domestica) worldwide. So far, no resistance gene against fire blight has been characterized in apple, despite several resistance regions having been identified. A highly efficacious resistance quantitative trait locus (QTL) was localized on linkage group 12 (LG12) of the ornamental cultivar 'Evereste'. A marker previously reported to be closely linked to this resistance was used to perform a chromosome landing. A bacterial artificial chromosome (BAC) clone of 189 kb carrying the fire blight resistance QTL was isolated and sequenced. New microsatellite markers were developed, and the genomic region containing the resistance locus was limited to 78 kb. A cluster of eight genes with homologies to already known resistance gene structures to bacterial diseases was identified and the corresponding gene transcription was verified. From this cluster, two genes were recognized in silico as the two most probable fire blight resistance genes showing homology with the Pto/Prf complex in tomato.


Asunto(s)
Malus/microbiología , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Cromosomas Artificiales Bacterianos/genética , Inmunidad Innata/genética , Inmunidad Innata/fisiología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas Serina-Treonina Quinasas/genética , Sitios de Carácter Cuantitativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...