RESUMEN
P2X7 receptors mediate immune and endothelial cell responses to extracellular ATP. Acute pharmacological blockade increases renal blood flow and filtration rate, suggesting that receptor activation promotes tonic vasoconstriction. P2X7 expression is increased in kidney disease and blockade/knockout is renoprotective. We generated a P2X7 knockout rat on F344 background, hypothesising enhanced renal blood flow and protection from angiotensin-II-induced renal injury. CRISPR/Cas9 introduced an early stop codon into exon 2 of P2rx7, abolishing P2X7 protein in kidney and reducing P2rx7 mRNA abundance by ~ 60% in bone-marrow derived macrophages. The M1 polarisation response to lipopolysaccharide was unaffected but P2X7 receptor knockout suppressed ATP-induced IL-1ß release. In male knockout rats, acetylcholine-induced dilation of the renal artery ex vivo was diminished but not the response to nitroprusside. Renal function in male and female knockout rats was not different from wild-type. Finally, in male rats infused with angiotensin-II for 6 weeks, P2X7 knockout did not reduce albuminuria, tubular injury, renal macrophage accrual, and renal perivascular fibrosis. Contrary to our hypothesis, global P2X7 knockout had no impact on in vivo renal hemodynamics. Our study does not indicate a major role for P2X7 receptor activation in renal vascular injury.
Asunto(s)
Angiotensina II , Riñón , Ratas Endogámicas F344 , Receptores Purinérgicos P2X7 , Animales , Receptores Purinérgicos P2X7/metabolismo , Receptores Purinérgicos P2X7/genética , Masculino , Ratas , Riñón/metabolismo , Riñón/patología , Femenino , Técnicas de Inactivación de Genes , Macrófagos/metabolismo , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/genética , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/patologíaRESUMEN
Patients with advanced chronic kidney disease (CKD) mostly die from sudden cardiac death and recurrent heart failure. The mechanisms of cardiac remodeling are largely unclear. To dissect molecular and cellular mechanisms of cardiac remodeling in CKD in an unbiased fashion, we performed left ventricular single-nuclear RNA sequencing in two mouse models of CKD. Our data showed a hypertrophic response trajectory of cardiomyocytes with stress signaling and metabolic changes driven by soluble uremia-related factors. We mapped fibroblast to myofibroblast differentiation in this process and identified notable changes in the cardiac vasculature, suggesting inflammation and dysfunction. An integrated analysis of cardiac cellular responses to uremic toxins pointed toward endothelin-1 and methylglyoxal being involved in capillary dysfunction and TNFα driving cardiomyocyte hypertrophy in CKD, which was validated in vitro and in vivo. TNFα inhibition in vivo ameliorated the cardiac phenotype in CKD. Thus, interventional approaches directed against uremic toxins, such as TNFα, hold promise to ameliorate cardiac remodeling in CKD.
Asunto(s)
Insuficiencia Cardíaca , Insuficiencia Renal Crónica , Ratones , Animales , Humanos , Factor de Necrosis Tumoral alfa/genética , Tóxinas Urémicas , Remodelación Ventricular , Insuficiencia Cardíaca/etiologíaRESUMEN
Progressive fibrosis is a feature of aging and chronic tissue injury in multiple organs, including the kidney and heart. Glioma-associated oncogene 1 expressing (Gli1+) cells are a major source of activated fibroblasts in multiple organs, but the links between injury, inflammation, and Gli1+ cell expansion and tissue fibrosis remain incompletely understood. We demonstrated that leukocyte-derived tumor necrosis factor (TNF) promoted Gli1+ cell proliferation and cardiorenal fibrosis through induction and release of Indian Hedgehog (IHH) from renal epithelial cells. Using single-cell-resolution transcriptomic analysis, we identified an "inflammatory" proximal tubular epithelial (iPT) population contributing to TNF- and nuclear factor κB (NF-κB)-induced IHH production in vivo. TNF-induced Ubiquitin D (Ubd) expression was observed in human proximal tubular cells in vitro and during murine and human renal disease and aging. Studies using pharmacological and conditional genetic ablation of TNF-induced IHH signaling revealed that IHH activated canonical Hedgehog signaling in Gli1+ cells, which led to their activation, proliferation, and fibrosis within the injured and aging kidney and heart. These changes were inhibited in mice by Ihh deletion in Pax8-expressing cells or by pharmacological blockade of TNF, NF-κB, or Gli1 signaling. Increased amounts of circulating IHH were associated with loss of renal function and higher rates of cardiovascular disease in patients with chronic kidney disease. Thus, IHH connects leukocyte activation to Gli1+ cell expansion and represents a potential target for therapies to inhibit inflammation-induced fibrosis.
Asunto(s)
Proteínas Hedgehog , Insuficiencia Renal Crónica , Animales , Humanos , Ratones , Fibrosis , Proteínas Hedgehog/metabolismo , Inflamación , FN-kappa B , Factores de Necrosis Tumoral , Proteína con Dedos de Zinc GLI1RESUMEN
Heart failure and chronic kidney disease (CKD) share several mediators of cardiac pathological remodelling. Akin to heart failure, this remodelling sets in motion a vicious cycle of progressive pathological hypertrophy and myocardial dysfunction in CKD. Several decades of heart failure research have shown that beta blockade is a powerful tool in preventing cardiac remodelling and breaking this vicious cycle. This phenomenon remains hitherto untested in CKD. Therefore, we set out to test the hypothesis that beta blockade prevents cardiac pathological remodelling in experimental uremia. Wistar rats had subtotal nephrectomy or sham surgery and were followed up for 10 weeks. The animals were randomly allocated to the beta blocker metoprolol (10 mg/kg/day) or vehicle. In vivo and in vitro cardiac assessments were performed. Cardiac tissue was extracted, and protein expression was quantified using immunoblotting. Histological analyses were performed to quantify myocardial fibrosis. Beta blockade attenuated cardiac pathological remodelling in nephrectomised animals. The echocardiographic left ventricular mass and the heart weight to tibial length ratio were significantly lower in nephrectomised animals treated with metoprolol. Furthermore, beta blockade attenuated myocardial fibrosis associated with subtotal nephrectomy. In addition, the Ca++- calmodulin-dependent kinase II (CAMKII) pathway was shown to be activated in uremia and attenuated by beta blockade, offering a potential mechanism of action. In conclusion, beta blockade attenuated hypertrophic signalling pathways and ameliorated cardiac pathological remodelling in experimental uremia. The study provides a strong scientific rationale for repurposing beta blockers, a tried and tested treatment in heart failure, for the benefit of patients with CKD.
Asunto(s)
Insuficiencia Cardíaca , Insuficiencia Renal Crónica , Humanos , Ratas , Animales , Ratas Wistar , Metoprolol/farmacología , Insuficiencia Renal Crónica/tratamiento farmacológico , Hipertrofia , FibrosisRESUMEN
Progressive fibrosis and maladaptive organ repair result in significant morbidity and millions of premature deaths annually. Senescent cells accumulate with aging and after injury and are implicated in organ fibrosis, but the mechanisms by which senescence influences repair are poorly understood. Using 2 murine models of injury and repair, we show that obstructive injury generated senescent epithelia, which persisted after resolution of the original injury, promoted ongoing fibrosis, and impeded adaptive repair. Depletion of senescent cells with ABT-263 reduced fibrosis in reversed ureteric obstruction and after renal ischemia/reperfusion injury. We validated these findings in humans, showing that senescence and fibrosis persisted after relieved renal obstruction. We next characterized senescent epithelia in murine renal injury using single-cell RNA-Seq. We extended our classification to human kidney and liver disease and identified conserved profibrotic proteins, which we validated in vitro and in human disease. We demonstrated that increased levels of protein disulfide isomerase family A member 3 (PDIA3) augmented TGF-ß-mediated fibroblast activation. Inhibition of PDIA3 in vivo significantly reduced kidney fibrosis during ongoing renal injury and as such represented a new potential therapeutic pathway. Analysis of the signaling pathways of senescent epithelia connected senescence to organ fibrosis, permitting rational design of antifibrotic therapies.
Asunto(s)
Senescencia Celular , Riñón , Ratones , Humanos , Animales , Senescencia Celular/fisiología , Fibrosis , Riñón/patología , Epitelio , Análisis de la Célula IndividualRESUMEN
Ultrasound has previously been demonstrated to non-invasively cause tissue disruption. Small animal studies have demonstrated that this effect can be enhanced by contrast microbubbles and has the potential to be clinically beneficial in techniques such as targeted drug delivery or enhancing liquid biopsies when a physical biopsy may be inappropriate. Cavitating microbubbles in close proximity to cells increases membrane permeability, allowing small intracellular molecules to leak into the extracellular space. This study sought to establish whether cavitating microbubbles could liberate cell-specific miRNAs, augmenting biomarker detection for non-invasive liquid biopsies. Insonating human polarized renal proximal tubular epithelial cells (RPTECs), in the presence of SonoVue microbubbles, revealed that cellular health could be maintained while achieving the release of miRNAs, miR-21, miR-30e, miR-192 and miR-194 (respectively, 10.9-fold, 7.17-fold, 5.95-fold and 5.36-fold). To examine the mechanism of release, RPTECs expressing enhanced green fluorescent protein were generated and the protein successfully liberated. Cell polarization, cellular phenotype and cell viability after sonoporation were measured by a number of techniques. Ultrastructural studies using electron microscopy showed gap-junction disruption and pore formation on cellular surfaces. These studies revealed that cell-specific miRNAs can be non-specifically liberated from RPTECs by sonoporation without a significant decrease in cell viability.
Asunto(s)
MicroARNs , Animales , Biomarcadores , Permeabilidad de la Membrana Celular , Células Epiteliales , Humanos , MicroburbujasRESUMEN
The global prevalence of diabetes mellitus was estimated to be 463 million people in 2019 and is predicted to rise to 700 million by 2045. The associated financial and societal costs of this burgeoning epidemic demand an understanding of the pathology of this disease, and its complications, that will inform treatment to enable improved patient outcomes. Nearly two decades after the sequencing of the human genome, the significance of noncoding RNA expression is still being assessed. The family of functional noncoding RNAs known as microRNAs regulates the expression of most genes encoded by the human genome. Altered microRNA expression profiles have been observed both in diabetes and in diabetic complications. These transcripts therefore have significant potential and novelty as targets for therapy, therapeutic agents and biomarkers.
Asunto(s)
Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/fisiopatología , Portadores de Fármacos , MicroARNs/farmacología , MicroARNs/uso terapéutico , Biomarcadores , Complicaciones de la Diabetes/tratamiento farmacológico , Complicaciones de la Diabetes/fisiopatología , Fibrosis/tratamiento farmacológico , Fibrosis/fisiopatología , Humanos , Hipoglucemiantes/farmacología , Inflamación/metabolismo , MicroARNs/administración & dosificación , Sistema de Administración de Fármacos con NanopartículasRESUMEN
[Figure: see text].
Asunto(s)
Transición Epitelial-Mesenquimal , Hipertensión Pulmonar/metabolismo , ARN Largo no Codificante/metabolismo , Animales , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/patología , Ratones , Proteína de Unión al Tracto de Polipirimidina/metabolismo , ARN Largo no Codificante/genética , Transcriptoma , Remodelación VascularRESUMEN
[Figure: see text].
Asunto(s)
Aterosclerosis/etiología , Desdiferenciación Celular , MicroARNs/metabolismo , Músculo Liso Vascular/fisiología , ARN Largo no Codificante/fisiología , Animales , Aterosclerosis/patología , Movimiento Celular , Proliferación Celular , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Vasos Coronarios/citología , Regulación hacia Abajo , Técnicas de Silenciamiento del Gen , Silenciador del Gen , Humanos , Metabolismo de los Lípidos , Ratones , Músculo Liso Vascular/citología , Oligonucleótidos Antisentido , Fenotipo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , TranscriptomaRESUMEN
Kidney disease represents a global health burden of increasing prevalence and is an independent risk factor for cardiovascular disease. Myeloid cells are a major cellular compartment of the immune system; they are found in the healthy kidney and in increased numbers in the damaged and/or diseased kidney, where they act as key players in the progression of injury, inflammation, and fibrosis. They possess enormous plasticity and heterogeneity, adopting different phenotypic and functional characteristics in response to stimuli in the local milieu. Although this inherent complexity remains to be fully understood in the kidney, advances in single-cell genomics promise to change this. Specifically, single-cell RNA sequencing (scRNA-seq) has had a transformative effect on kidney research, enabling the profiling and analysis of the transcriptomes of single cells at unprecedented resolution and throughput, and subsequent generation of cell atlases. Moving forward, combining scRNA- and single-nuclear RNA-seq with greater-resolution spatial transcriptomics will allow spatial mapping of kidney disease of varying etiology to further reveal the patterning of immune cells and nonimmune renal cells. This review summarizes the roles of myeloid cells in kidney health and disease, the experimental workflow in currently available scRNA-seq technologies, and published findings using scRNA-seq in the context of myeloid cells and the kidney.
Asunto(s)
Enfermedades Renales , Análisis de la Célula Individual , Perfilación de la Expresión Génica , Humanos , Enfermedades Renales/genética , Análisis de Secuencia de ARN , Transcriptoma/genéticaRESUMEN
Small noncoding RNAs, miRNAs (miRNAs), are emerging as important modulators in the pathogenesis of kidney disease, with potential as biomarkers of kidney disease onset, progression, or therapeutic efficacy. Bulk tissue small RNA-sequencing (sRNA-Seq) and microarrays are widely used to identify dysregulated miRNA expression but are limited by the lack of precision regarding the cellular origin of the miRNA. In this study, we performed cell-specific sRNA-Seq on tubular cells, endothelial cells, PDGFR-ß+ cells, and macrophages isolated from injured and repairing kidneys in the murine reversible unilateral ureteric obstruction model. We devised an unbiased bioinformatics pipeline to define the miRNA enrichment within these cell populations, constructing a miRNA catalog of injury and repair. Our analysis revealed that a significant proportion of cell-specific miRNAs in healthy animals were no longer specific following injury. We then applied this knowledge of the relative cell specificity of miRNAs to deconvolute bulk miRNA expression profiles in the renal cortex in murine models and human kidney disease. Finally, we used our data-driven approach to rationally select macrophage-enriched miR-16-5p and miR-18a-5p and demonstrate that they are promising urinary biomarkers of acute kidney injury in renal transplant recipients.
Asunto(s)
Lesión Renal Aguda/genética , MicroARNs/genética , Especificidad de Órganos/genética , Animales , Biomarcadores , Biología Computacional/métodos , Células Endoteliales/metabolismo , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Riñón/metabolismo , Túbulos Renales/metabolismo , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/metabolismoRESUMEN
BACKGROUND: Extracellular microRNAs enter kidney cells and modify gene expression. We used a Dicer-hepatocyte-specific microRNA conditional-knock-out (Dicer-CKO) mouse to investigate microRNA transfer from liver to kidney. METHODS: Dicerflox/flox mice were treated with a Cre recombinase-expressing adenovirus (AAV8) to selectively inhibit hepatocyte microRNA production (Dicer-CKO). Organ microRNA expression was measured in health and following paracetamol toxicity. The functional consequence of hepatic microRNA transfer was determined by measuring the expression and activity of cytochrome P450 2E1 (target of the hepatocellular miR-122), and by measuring the effect of serum extracellular vesicles (ECVs) on proximal tubular cell injury. In humans with liver injury we measured microRNA expression in urinary ECVs. A murine model of myocardial infarction was used as a non-hepatic model of microRNA release. FINDINGS: Dicer-CKO mice demonstrated a decrease in kidney miR-122 in the absence of other microRNA changes. During hepatotoxicity, miR-122 increased in kidney tubular cells; this was abolished in Dicer-CKO mice. Depletion of hepatocyte microRNA increased kidney cytochrome P450 2E1 expression and activity. Serum ECVs from mice with hepatotoxicity increased proximal tubular cell miR-122 and prevented cisplatin toxicity. miR-122 increased in urinary ECVs during human hepatotoxicity. Transfer of microRNA was not restricted to liver injury -miR-499 was released following cardiac injury and correlated with an increase in the kidney. INTERPRETATION: Physiological transfer of functional microRNA to the kidney is increased by liver injury and this signalling represents a new paradigm for understanding the relationship between liver injury and renal function. FUNDING: Kidney Research UK, Medical Research Scotland, Medical Research Council.
Asunto(s)
Citocromo P-450 CYP2E1/genética , Células Epiteliales/metabolismo , Regulación de la Expresión Génica , Hepatocitos/metabolismo , Túbulos Renales/metabolismo , MicroARNs/genética , Interferencia de ARN , Animales , Citocromo P-450 CYP2E1/metabolismo , Femenino , Túbulos Renales/citología , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , MicroARNs/administración & dosificación , Especificidad de Órganos/genéticaRESUMEN
BACKGROUND: Little is known about the roles of myeloid cell subsets in kidney injury and in the limited ability of the organ to repair itself. Characterizing these cells based only on surface markers using flow cytometry might not provide a full phenotypic picture. Defining these cells at the single-cell, transcriptomic level could reveal myeloid heterogeneity in the progression and regression of kidney disease. METHODS: Integrated droplet- and plate-based single-cell RNA sequencing were used in the murine, reversible, unilateral ureteric obstruction model to dissect the transcriptomic landscape at the single-cell level during renal injury and the resolution of fibrosis. Paired blood exchange tracked the fate of monocytes recruited to the injured kidney. RESULTS: A single-cell atlas of the kidney generated using transcriptomics revealed marked changes in the proportion and gene expression of renal cell types during injury and repair. Conventional flow cytometry markers would not have identified the 12 myeloid cell subsets. Monocytes recruited to the kidney early after injury rapidly adopt a proinflammatory, profibrotic phenotype that expresses Arg1, before transitioning to become Ccr2+ macrophages that accumulate in late injury. Conversely, a novel Mmp12+ macrophage subset acts during repair. CONCLUSIONS: Complementary technologies identified novel myeloid subtypes, based on transcriptomics in single cells, that represent therapeutic targets to inhibit progression or promote regression of kidney disease.
Asunto(s)
Enfermedades Renales/etiología , Enfermedades Renales/patología , Células Mieloides/fisiología , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Enfermedades Renales/metabolismo , Macrófagos/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Obstrucción Ureteral/etiologíaRESUMEN
The omentum is a visceral adipose tissue rich in fat-associated lymphoid clusters (FALCs) that collects peritoneal contaminants and provides a first layer of immunological defense within the abdomen. Here, we investigated the mechanisms that mediate the capture of peritoneal contaminants during peritonitis. Single-cell RNA sequencing and spatial analysis of omental stromal cells revealed that the surface of FALCs were covered by CXCL1+ mesothelial cells, which we termed FALC cover cells. Blockade of CXCL1 inhibited the recruitment and aggregation of neutrophils at FALCs during zymosan-induced peritonitis. Inhibition of protein arginine deiminase 4, an enzyme important for the release of neutrophil extracellular traps, abolished neutrophil aggregation and the capture of peritoneal contaminants by omental FALCs. Analysis of omental samples from patients with acute appendicitis confirmed neutrophil recruitment and bacterial capture at FALCs. Thus, specialized omental mesothelial cells coordinate the recruitment and aggregation of neutrophils to capture peritoneal contaminants.
Asunto(s)
Apendicitis/inmunología , Linfocitos/inmunología , Neutrófilos/inmunología , Epiplón/inmunología , Peritonitis/inmunología , Células del Estroma/inmunología , Enfermedad Aguda , Animales , Apendicitis/genética , Apendicitis/microbiología , Comunicación Celular/inmunología , Quimiocina CXCL1/genética , Quimiocina CXCL1/inmunología , Células Epiteliales/inmunología , Células Epiteliales/microbiología , Epitelio/inmunología , Epitelio/microbiología , Escherichia coli/crecimiento & desarrollo , Escherichia coli/patogenicidad , Trampas Extracelulares/inmunología , Femenino , Expresión Génica , Humanos , Linfocitos/microbiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Infiltración Neutrófila , Neutrófilos/microbiología , Epiplón/microbiología , Peritonitis/inducido químicamente , Peritonitis/genética , Peritonitis/microbiología , Arginina Deiminasa Proteína-Tipo 4/genética , Arginina Deiminasa Proteína-Tipo 4/inmunología , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Células del Estroma/microbiología , Técnicas de Cultivo de Tejidos , Zimosan/administración & dosificaciónRESUMEN
GPR81 (G-protein-coupled receptor 81) is highly expressed in adipocytes, and activation by the endogenous ligand lactate inhibits lipolysis. GPR81 is also expressed in the heart, liver, and kidney, but roles in nonadipose tissues are poorly defined. GPR81 agonists, developed to improve blood lipid profile, might also provide insights into GPR81 physiology. Here, we assessed the blood pressure and renal hemodynamic responses to the GPR81 agonist, AZ'5538. In male wild-type mice, intravenous AZ'5538 infusion caused a rapid and sustained increase in systolic and diastolic blood pressure. Renal artery blood flow, intrarenal tissue perfusion, and glomerular filtration rate were all significantly reduced. AZ'5538 had no effect on blood pressure or renal hemodynamics in Gpr81-/- mice. Gpr81 mRNA was expressed in renal artery vascular smooth muscle, in the afferent arteriole, in glomerular and medullary perivascular cells, and in pericyte-like cells isolated from kidney. Intravenous AZ'5538 increased plasma ET-1 (endothelin 1), and pretreatment with BQ123 (endothelin-A receptor antagonist) prevented the pressor effects of GPR81 activation, whereas BQ788 (endothelin-B receptor antagonist) did not. Renal ischemia-reperfusion injury, which increases renal extracellular lactate, increased the renal expression of genes encoding ET-1, KIM-1 (Kidney Injury Molecule 1), collagen type 1-α1, TNF-α (tumor necrosis factor-α), and F4/80 in wild-type mice but not in Gpr81-/- mice. In summary, activation of GPR81 in vascular smooth muscle and perivascular cells regulates renal hemodynamics, mediated by release of the potent vasoconstrictor ET-1. This suggests that lactate may be a paracrine regulator of renal blood flow, particularly relevant when extracellular lactate is high as occurs during ischemic renal disease.
Asunto(s)
Endotelina-1/fisiología , Hemodinámica/efectos de los fármacos , Receptores Acoplados a Proteínas G/agonistas , Animales , Arterias/efectos de los fármacos , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/fisiología , Bosentán/farmacología , Endotelina-1/sangre , Tasa de Filtración Glomerular/efectos de los fármacos , Corazón/efectos de los fármacos , Hemodinámica/fisiología , Infusiones Intravenosas , Riñón/irrigación sanguínea , Riñón/efectos de los fármacos , Lactatos/sangre , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Oligopéptidos/farmacología , Comunicación Paracrina , Péptidos Cíclicos/farmacología , Pericitos/efectos de los fármacos , Pericitos/metabolismo , Piperidinas/farmacología , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Receptores Acoplados a Proteínas G/deficiencia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/fisiología , Circulación Renal/efectos de los fármacos , Circulación Renal/fisiología , Daño por Reperfusión/sangre , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/genética , Daño por Reperfusión/fisiopatologíaRESUMEN
RATIONALE: Despite increasing understanding of the prognostic importance of vascular stiffening linked to perivascular fibrosis in hypertension, the molecular and cellular regulation of this process is poorly understood. OBJECTIVES: To study the functional role of microRNA-214 (miR-214) in the induction of perivascular fibrosis and endothelial dysfunction driving vascular stiffening. METHODS AND RESULTS: Out of 381 miRs screened in the perivascular tissues in response to Ang II (angiotensin II)-mediated hypertension, miR-214 showed the highest induction (8-fold, P=0.0001). MiR-214 induction was pronounced in perivascular and circulating T cells, but not in perivascular adipose tissue adipocytes. Global deletion of miR-214-/- prevented Ang II-induced periaortic fibrosis, Col1a1, Col3a1, Col5a1, and Tgfb1 expression, hydroxyproline accumulation, and vascular stiffening, without difference in blood pressure. Mechanistic studies revealed that miR-214-/- mice were protected against endothelial dysfunction, oxidative stress, and increased Nox2, all of which were induced by Ang II in WT mice. Ang II-induced recruitment of T cells into perivascular adipose tissue was abolished in miR-214-/- mice. Adoptive transfer of miR-214-/- T cells into RAG1-/- mice resulted in reduced perivascular fibrosis compared with the effect of WT T cells. Ang II induced hypertension caused significant change in the expression of 1380 T cell genes in WT, but only 51 in miR-214-/-. T cell activation, proliferation and chemotaxis pathways were differentially affected. MiR-214-/- prevented Ang II-induction of profibrotic T cell cytokines (IL-17, TNF-α, IL-9, and IFN-γ) and chemokine receptors (CCR1, CCR2, CCR4, CCR5, CCR6, and CXCR3). This manifested in reduced in vitro and in vivo T cell chemotaxis resulting in attenuation of profibrotic perivascular inflammation. Translationally, we show that miR-214 is increased in plasma of patients with hypertension and is directly correlated to pulse wave velocity as a measure of vascular stiffness. CONCLUSIONS: T-cell-derived miR-214 controls pathological perivascular fibrosis in hypertension mediated by T cell recruitment and local profibrotic cytokine release.
Asunto(s)
Endotelio Vascular/metabolismo , Hipertensión/genética , Hipertensión/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Linfocitos T/metabolismo , Animales , Endotelio Vascular/patología , Fibrosis/genética , Fibrosis/metabolismo , Fibrosis/patología , Humanos , Hipertensión/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Análisis de la Onda del Pulso/métodos , Linfocitos T/patología , Transcriptoma/fisiologíaRESUMEN
Chronic kidney disease (CKD) is prevalent worldwide and is associated with significant co-morbidities including cardiovascular disease (CVD). Traditionally, the subtotal nephrectomy (remnant kidney) experimental model has been performed in rats to model progressive renal disease. The model experimentally mimics CKD by reducing nephron number, resulting in renal insufficiency. Presently, there is a lack of translation of pre-clinical findings into successful clinical results. The pre-clinical nephrology field would benefit from reproducible progressive renal disease models in mice in order to avail of more widely available transgenics and experimental tools to dissect mechanisms of disease. Here we evaluate if a simplified single step subtotal nephrectomy (STNx) model performed in the 129S2/SV mouse can recapitulate the renal and cardiac changes observed in patients with CKD in a reproducible and robust way. The single step STNx surgery was well-tolerated and resulted in clinically relevant outcomes including hypertension, increased urinary albumin:creatinine ratio, and significantly increased serum creatinine, phosphate and urea. STNx mice developed significant left ventricular hypertrophy without reduced ejection fraction or cardiac fibrosis. Analysis of intra-renal inflammation revealed persistent recruitment of Ly6C hi monocytes transitioning to pro-fibrotic inflammatory macrophages in STNx kidneys. Unlike 129S2/SV mice, C57BL/6 mice exhibited renal fibrosis without proteinuria, renal dysfunction, or cardiac pathology. Therefore, the 129S2/SV genetic background is susceptible to induction of progressive proteinuric renal disease and cardiac hypertrophy using our refined, single-step flank STNx method. This reproducible model could be used to study the systemic pathophysiological changes induced by CKD in the kidney and the heart, intra-renal inflammation and for testing new therapies for CKD.
RESUMEN
BACKGROUND: Excessive TGF-ß signalling has been shown to underlie pulmonary hypertension (PAH). Human pulmonary artery smooth muscle cells (HPASMCs) can release extracellular vesicles (EVs) but their contents and significance have not yet been studied. Here, we aimed to analyse the contents and biological relevance of HPASMC-EVs and their transport to human pulmonary arterial endothelial cells (HPAECs), as well as the potential alteration of these under pathological conditions. METHODS: We used low-input RNA-Seq to analyse the RNA cargoes sorted into released HPASMC-EVs under basal conditions. We additionally analysed the effects of excessive TGF-ß signalling, using TGF-ß1 and BMP4, in the transcriptome of HPASMCs and their EVs. We then, for the first time, optimised Cre-loxP technology for its use with primary cells in vitro, directly visualising HPASMC-to-HPAEC communication and protein markers on cells taking up EVs. Furthermore we could analyse alteration of this transport with excessive TGF-ß signalling, as well as by other cytokines involved in PAH: IL-1ß, TNF-α and VEGFA. RESULTS: We were able to detect transcripts from 2417 genes in HPASMC-EVs. Surprisingly, among the 759 enriched in HPASMC-EVs compared to their donor cells, we found Zeb1 and 2 TGF-ß superfamily ligands, GDF11 and TGF-ß3. Moreover, we identified 90 genes differentially expressed in EVs from cells treated with TGF-ß1 compared to EVs in basal conditions, including a subset involved in actin and ECM remodelling, among which were bHLHE40 and palladin. Finally, using Cre-loxP technology we showed cell-to-cell transfer and translation of HPASMC-EV Cre mRNA from HPASMC to HPAECs, effectively evidencing communication via EVs. Furthermore, we found increased number of smooth-muscle actin positive cells on HPAECs that took up HPASMC-EVs. The uptake and translation of mRNA was also higher in activated HPAECs, when stimulated with TGF-ß1 or IL-1ß. CONCLUSIONS: HPASMC-EVs are enriched in RNA transcripts that encode genes that could contribute to vascular remodelling and EndoMT during development and PAH, and TGF-ß1 up-regulates some that could enhance this effects. These EVs are functionally transported, increasingly taken up by activated HPAECs and contribute to EndoMT, suggesting a potential effect of HPASMC-EVs in TGF-ß signalling and other related processes during PAH development.
Asunto(s)
Vesículas Extracelulares/metabolismo , Hipertensión Pulmonar/patología , Miocitos del Músculo Liso/patología , Arteria Pulmonar/patología , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Remodelación Vascular , Proteínas Morfogenéticas Óseas/metabolismo , Endotelio Vascular/patología , Factores de Diferenciación de Crecimiento/metabolismo , Humanos , Interleucina-1beta/metabolismo , Fenotipo , Factor de Crecimiento Transformador beta3/metabolismo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismoRESUMEN
Noncoding RNAs (long noncoding RNAs and small RNAs) are emerging as critical modulators of phenotypic changes associated with physiological and pathological contexts in a variety of cardiovascular diseases (CVDs). Although it has been well established that hereditable genetic alterations and exposure to risk factors are crucial in the development of CVDs, other critical regulators of cell function impact on disease processes. Here we discuss noncoding RNAs have only recently been identified as key players involved in the progression of disease. In particular, we discuss micro RNA (miR)-143/145 since they represent one of the most characterised microRNA clusters regulating smooth muscle cell (SMC) differentiation and phenotypic switch in response to vascular injury and remodelling. MiR143HG is a well conserved long noncoding RNA (lncRNA), which is the host gene for miR-143/145 and recently implicated in cardiac specification during heart development. Although the lncRNA-miRNA interactions have not been completely characterised, their crosstalk is now beginning to emerge and likely requires further research focus. In this review we give an overview of the biology of the genomic axis that is miR-143/145 and MiR143HG, focusing on their important functional role(s) in the cardiovascular system.