Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Water Res ; 253: 121318, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38387270

RESUMEN

Although rivers are increasingly recognized as essential sources of greenhouse gases (GHG) to the atmosphere, few systematic efforts have been made to reveal the drivers of spatiotemporal variations of dissolved GHG (dGHG) in large rivers under increasing anthropogenic stress and intensified hydrological cycling. Here, through a source-to-estuary survey of the Yangtze River in March (spring) and October (autumn) of 2018, we revealed that labile dissolved organic matter (DOM) and nitrogen inputs remarkably modified the spatiotemporal distribution of dGHG. The average partial pressure of CO2 (pCO2), CH4 and N2O concentrations of all sampling sites in the Yangtze River were 1015 ± 225 µatm, and 87.5± 36.5 nmol L-1, and 20.3 ± 6.6 nmol L-1, respectively, significantly lower than the global average. In terms of longitudinal and seasonal variations, higher GHG concentrations were observed in the middle-lower reach in spring. The dominant drivers of spatiotemporal variations in dGHG were labile, protein-like DOM components and nitrogen level. Compared with the historical data of dGHG from published literature, we found a significant increase in N2O concentrations in the Yangtze River during 2004-2018, and the increasing trend was consistent with the rising riverine nitrogen concentrations. Our study emphasized the critical roles of labile DOM and nitrogen inputs in driving the spatial hotspots, seasonal variations and annual trends of dGHG. These findings can contribute to constraining the global GHG budget estimations and controls of GHG emission in large rivers in response to global change.


Asunto(s)
Gases de Efecto Invernadero , Gases de Efecto Invernadero/análisis , Estuarios , Materia Orgánica Disuelta , Ríos , Nitrógeno , China
2.
Water Res ; 253: 121310, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38368734

RESUMEN

In landfill leachate treatment plants (LLTPs), the microbiome plays a pivotal role in the decomposition of organic compounds, reduction in nutrient levels, and elimination of toxins. However, the effects of microbes in landfill leachate influents on downstream treatment systems remain poorly understood. To address this knowledge gap, we collected 23 metagenomic and 12 metatranscriptomic samples from landfill leachate and activated sludge from various treatment units in a full-scale LLTP. We successfully recovered 1,152 non-redundant metagenome-assembled genomes (MAGs), encompassing a wide taxonomic range, including 48 phyla, 95 classes, 166 orders, 247 families, 238 genera, and 1,152 species. More diverse microbes were observed in the influent leachate than in the downstream biotreatment systems, among which, an unprecedented ∼30 % of microbes with transcriptional expression migrated from the influent to the biological treatment units. Network analysis revealed that 399 shared MAGs across the four units exhibited high node centrality and degree, thus supporting enhanced interactions and increased stability of microbial communities. Functional reconstruction and genome characterization of MAGs indicated that these shared MAGs possessed greater capabilities for carbon, nitrogen, sulfur, and arsenic metabolism compared to non-shared MAGs. We further identified a novel species of Zixibacteria in the leachate influent with discrete lineages from those in other environments that accounted for up to 17 % of the abundance of the shared microbial community and exhibited notable metabolic versatility. Meanwhile, we presented groundbreaking evidence of the involvement of Zixibacteria-encoded genes in the production of harmful gas emissions, such as N2O and H2S, at the transcriptional level, thus suggesting that influent microbes may pose safety risks to downstream treatment systems. In summary, this study revealed the complex impact of the influent microbiome on LLTP and emphasizes the need to consider these microbial characteristics when designing treatment technologies and strategies for landfill leachate management.


Asunto(s)
Microbiota , Contaminantes Químicos del Agua , Humanos , Contaminantes Químicos del Agua/análisis , Aguas del Alcantarillado , Metagenoma
3.
Water Res ; 245: 120611, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37722141

RESUMEN

Enormous viral populations have been identified in activated sludge systems, but their ecological and biochemical roles in landfill leachate treatment plants remain poorly understood. To address this knowledge gap, we conducted an in-depth analysis using 36 metagenomic datasets that we collected and sequenced during a half-year time-series sampling campaign at six sites in a full-scale landfill leachate treatment plant (LLTP), elucidating viral distribution, virus‒host dynamics, virus-encoded auxiliary metabolic genes (AMGs), and viral contributions to the spread of virulence and antibiotic resistance genes. Our findings demonstrated that viral and prokaryotic communities differed widely among different treatment units, with stability over time. LLTP viruses were linked to various prokaryotic hosts, spanning 35 bacterial phyla and one archaeal phylum, which included the core microbes involved in biological treatments, as well as some of the less well-characterized microbial dark matter phyla. By encoding 2364 auxiliary metabolic genes (AMGs), viruses harbored the potential to regulate microbial nucleotide metabolism, facilitate the biodegradation of complex organic matter, and enhance flocculation and settling in biological treatment plants. The abundance distribution of AMGs varied considerably across treatment units and showed a lifestyle-dependent pattern with temperate virus-associated AMGs exhibiting a higher average abundance in downstream biological treatment units and effluent water. Meanwhile, temperate viruses tended to carry a higher load of virulence factor genes (VFGs), antibiotic resistance genes (ARGs), and biotic and metal resistance genes (BMRGs), and engaged in more frequent gene exchanges with prokaryotes than lytic viruses, thus acting as a pivotal contributor to the dissemination of pathogenicity and resistance genes in downstream LLTP units. This study provided a comprehensive profile of viral and prokaryotic communities in the LLTP and unveiled the varying roles of different-lifestyle viruses in biochemical processes and water quality safety.

4.
Microbiome ; 11(1): 152, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37468948

RESUMEN

BACKGROUND: Microbes constitute almost the entire biological community in subsurface groundwater and play an important role in ecological evolution and global biogeochemical cycles. Ecological baseline as a fundamental reference with less human interference has been investigated in surface ecosystems such as soils, rivers, and ocean, but the existence of groundwater microbial ecological baseline (GMEB) is still an open question so far. RESULTS: Based on high-throughput sequencing information derived from national monitoring of 733 newly constructed wells, we find that bacterial communities in pristine groundwater exhibit a significant lateral diversity gradient and gradually approach the topsoil microbial latitudinal diversity gradient with decreasing burial depth of phreatic water. Among 74 phyla dominated by Proteobacteria in groundwater, Patescibacteria act as keystone taxa that harmonize microbes in shallower aquifers and accelerate decline in bacterial diversity with increasing well-depth. Decreasing habitat niche breadth with increasing well-depth suggests a general change in the relationship among key microbes from closer cooperation in shallow to stronger competition in deep groundwater. Unlike surface-water microbes, microbial communities in pristine groundwater are predominantly shaped by deterministic processes, potentially associated with nutrient sequestration under dark and anoxic environments in aquifers. CONCLUSIONS: By unveiling the biogeographic patterns and mechanisms controlling the community assembly of microbes in pristine groundwater throughout China, we firstly confirm the existence of GMEB in shallower aquifers and propose Groundwater Microbial Community Index (GMCI) to evaluate anthropogenic impact, which highlights the importance of GMEB in groundwater water security and health diagnosis. Video Abstract.


Asunto(s)
Agua Subterránea , Microbiota , Bacterias/genética , Biota , Agua Subterránea/microbiología , Microbiota/genética , Agua
5.
Sci Total Environ ; 816: 151635, 2022 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-34774959

RESUMEN

Landfills are important sources of microorganisms associated with anaerobic digestion. However, the knowledge on microbiota along with their functional potential in this special habitat are still lacking. In this study, we recovered 1168 non-redundant metagenome-assembled genomes (MAGs) from nine landfill leachate samples collected from eight cities across China, spanning 42 phyla, 73 classes, 114 orders, 189 families, and 267 genera. Totally, 74.1% of 1168 MAGs could not be classified to any known species and 5.9% of these MAGs belonged to microbial dark matter phyla. Two putative novel classes were discovered from landfill leachate samples. The identification of thousands of novel carbohydrate-active enzymes showed similar richness level compared to the cow rumen microbiota. The methylotrophic methanogenic pathway was speculated to contribute significantly to methane production in the landfill leachate because of its co-occurrence with the acetoclastic and hydrogenotrophic methanogenic pathways. The genetic potential of dissimilatory nitrate reduction to ammonium (DNRA) was observed, implying DNRA may play a role in ammonium generation in landfill leachate. These findings implied that landfill leachate might be a valuable microbial resource repository and filled the previous understanding gaps for both methanogenesis and nitrogen cycling in landfill leachate microbiota. Our study provides a comprehensive genomic catalog and substantially provides unprecedented taxonomic and functional profiles of the landfill leachate microbiota.


Asunto(s)
Microbiota , Contaminantes Químicos del Agua , Humanos , Metagenoma , Metagenómica , Instalaciones de Eliminación de Residuos , Contaminantes Químicos del Agua/análisis
6.
Front Microbiol ; 12: 781156, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35126327

RESUMEN

The anaerobic ammonium oxidation (anammox) by autotrophic anaerobic ammonia-oxidizing bacteria (AnAOB) is a biological process used to remove reactive nitrogen from wastewater. It has been repeatedly reported that elevated nitrite concentrations can severely inhibit the growth of AnAOB, which renders the anammox process challenging for industrial-scale applications. Both denitrifying (DN) and dissimilatory nitrate reduction to ammonium (DNRA) bacteria can potentially consume excess nitrite in an anammox system to prevent its inhibitory effect on AnAOB. However, metabolic interactions among DN, DNRA, and AnAOB bacteria under elevated nitrite conditions remain to be elucidated at metabolic resolutions. In this study, a laboratory-scale anammox bioreactor was used to conduct an investigation of the microbial shift and functional interactions of AnAOB, DN, and DNRA bacteria during a long-term nitrite inhibition to eventual self-recovery episode. The relative abundance of AnAOB first decreased due to high nitrite concentration, which lowered the system's nitrogen removal efficiency, but then recovered automatically without any external interference. Based on the relative abundance variations of genomes in the inhibition, adaptation, and recovery periods, we found that DN and DNRA bacteria could be divided into three niche groups: type I (types Ia and Ib) that includes mainly DN bacteria and type II and type III that include primarily DNRA bacteria. Type Ia and type II bacteria outcompeted other bacteria in the inhibition and adaptation periods, respectively. They were recognized as potential nitrite scavengers at high nitrite concentrations, contributing to stabilizing the nitrite concentration and the eventual recovery of the anammox system. These findings shed light on the potential engineering solutions to maintain a robust and efficient industrial-scale anammox process.

7.
Water Res ; 186: 116318, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32871290

RESUMEN

The presence of antibiotics can exert significant selection pressure on the emergence and spread of antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB). However, co-selection effects for ARGs, the mobility of ARGs and the identification of ARG hosts under high antibiotic selection pressures are poorly understood. Here, metagenomic assembly and binning approaches were used to comprehensively decipher the prevalence of ARGs and their potential mobility and hosts in activated sludge reactors treating antibiotic production wastewater. We found the abundance of different ARG types in antibiotic treatments varied greatly and certain antibiotic pressure promoted the co-selection for the non-corresponding types of ARGs. Antibiotic selection pressures significantly increased the abundance and proportions of ARGs mediated by plasmids (57.9%), which were more prevalent than those encoded in chromosomes (19.2%). The results indicated that plasmids and chromosomes had a tendency to carry different types of ARGs. Moreover, higher co-occurrence frequency of ARGs and MGEs revealed that antibiotics enhanced the mobility potential of ARGs mediated by both plasmids and integrative and conjugative elements. Among the 689 metagenome-assembled genomes (MAGs) with high estimated quality, 119 MAGs assigning to nine bacterial phyla were identified as the ARG hosts and 33 MAGs exhibited possible multi-resistance to antibiotics. Some ARG types tended to be carried by certain bacteria (e.g. bacitracin resistance genes carried by the family Burkholderiaceae) and thus showed a pronounced host-specific pattern. This study enhances the understanding of the mobility and hosts of ARGs and provides important insights into the risk assessment and management of antibiotic resistance.


Asunto(s)
Antibacterianos , Metagenoma , Antagonistas de Receptores de Angiotensina , Inhibidores de la Enzima Convertidora de Angiotensina , Antibacterianos/farmacología , Bacterias/genética , Farmacorresistencia Microbiana/genética , Genes Bacterianos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...