Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38878162

RESUMEN

Activation of fatty acids as acyl-adenylates by fatty acid-AMP ligase (FAAL) is a well-established process contributing to the formation of various functional natural products. Enzymatic characterization of FAALs is pivotal for unraveling both the catalytic mechanism and its role in specific biosynthetic pathways. In this study, we recombinantly expressed and characterized a novel FAAL derived from marine Pseudoalteromonas citrea (PcFAAL). PcFAAL was a cold-adapted neutral enzyme, demonstrating optimal activity at 30 °C and pH 7.5. Notably, its specific activity relied on the presence of Mg2+; however, higher concentrations exceeding 10 mM resulted in inhibition of enzyme activity. Various organic solvents, especially water-immiscible organic solvents, demonstrated an activating effect on the activity of PcFAAL on various fatty acids. The specific activity exhibited a remarkable 50-fold increase under 4% (v/v) n-hexane compared to the aqueous system. PcFAAL displayed a broad spectrum of fatty acid substrate selectivity, with the highest specific activity for octanoic acid (C8:0), and the catalytic efficiency (kcat/Km) for octanoic acid was determined to be 1.8 nM-1·min-1. Furthermore, the enzyme demonstrated biocatalytic promiscuity in producing a class of N-acyl amino acid natural products, as verified by LC-ESI MS. Results indicated that the PcFAAL exhibits promiscuity towards 10 different kinds of amino acids and further demonstrated their potential value in the biosynthesis of corresponding functional N-acyl amino acids.

2.
J Am Chem Soc ; 146(20): 13949-13961, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38739624

RESUMEN

Aqueous-phase electrocatalytic hydrogenation of benzaldehyde on Cu leads not only to benzyl alcohol (the carbonyl hydrogenation product), but Cu also catalyzes carbon-carbon coupling to hydrobenzoin. In the absence of an organic substrate, H2 evolution proceeds via the Volmer-Tafel mechanism on Cu/C, with the Tafel step being rate-determining. In the presence of benzaldehyde, the catalyst surface is primarily covered with the organic substrate, while H* coverage is low. Mechanistically, the first H addition to the carbonyl O of an adsorbed benzaldehyde molecule leads to a surface-bound hydroxy intermediate. The hydroxy intermediate then undergoes a second and rate-determining H addition to its α-C to form benzyl alcohol. The H additions occur predominantly via the proton-coupled electron transfer mechanism. In a parallel reaction, the radical α-C of the hydroxy intermediate attacks the electrophilic carbonyl C of a physisorbed benzaldehyde molecule to form the C-C bond, which is rate-determining. The C-C coupling is accompanied by the protonation of the formed alkoxy radical intermediate, coupled with electron transfer from the surface of Cu, to form hydrobenzoin.

3.
Sci Rep ; 13(1): 11420, 2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37452067

RESUMEN

To determine the association between cell-free DNA fetal fraction (cffDNA) and various prenatal characters to better guide the clinical application of noninvasive prenatal screening (NIPS), a retrospective cohort study of 27,793 women with singleton pregnancies was conducted. Results indicated that no significant difference on cffDNA between trisomy/sex chromosome aneuploidy (SCA) and non-trisomy groups was found. However, the fetal fraction (FF) in the T18 and T13 subgroups were significantly lower than that in the non-trisomy group, while the FF in the T21 group was significantly higher than the non-trisomy group. Pearson's correlation analysis revealed a positive correlation between √FF and gestational week in the T21, SCA, and non-trisomy groups. A negative correlation between maternal age and √FF in T21 and non-trisomy cases was found, but a positive correlation in SCA group. Compared to the decreasing trend in FF in the T21 group, no significant difference was observed in the SCA group. The √FF level was negatively correlated to maternal BMI in T21 and non-trisomy group, while a positive correlation in SCA group. FF was close related to the result of NIPS and related maternal factors. Though NIPS has increased accuracy, the complexity still should be recognized especially in clinical practice.


Asunto(s)
Ácidos Nucleicos Libres de Células , Pruebas Genéticas , Embarazo , Humanos , Femenino , Estudios Retrospectivos , Edad Materna , Aberraciones Cromosómicas Sexuales , Diagnóstico Prenatal/métodos , Aneuploidia
4.
Endocrinology ; 164(7)2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37232361

RESUMEN

Lipid metabolism is closely linked to adiposity. Prader-Willi syndrome (PWS) is a typical genetic disorder causing obesity; however, the distinct lipidomic profiles in PWS children have not been thoroughly investigated. Herein, serum lipidomics analyses were simultaneously explored in PWS, simple obesity (SO), and normal children (Normal). Results indicated that the total concentration of phosphatidylcholine (PC) and lysophosphatidylcholine (LPC) in the PWS group were significantly deceased compared with both the SO and the Normal group. In contrast, compared with the Normal group, there was an overall significant increase in triacylglycerol (TAG) levels in both the PWS and the SO groups, with the highest found in SO group. Thirty-nine and 50 differential lipid species were screened among 3 groups: between obesity (PWS and SO) and the Normal group. Correlation analysis revealed distinct profiles in PWS that was different from other 2 groups. Notably, PC (P16:0/18:1), PE (P18:0-20:3), PE (P18:0-20:4)) showed significant negative correlation with body mass index (BMI) only in the PWS group. PE (P16:0-18:2) showed a negative association with BMI and weight in the PWS group, but significant positive correlation in the SO group; no statistically significant association was found in the Normal group. We also found a significant negative correlation between Blautia genus abundance and several significantly changed lipids, including LPC (14:0), LPC (16:0), TAG (C50:2/C51:9), TAG (C52:2/C53:9), TAG (C52:3/C53:10), and TAG (C52:4/C53:11), but no significant correlation in the Normal group and the SO group. Similarly, in the PWS group, the Neisseria genus was significantly negatively associated with acylcarnitine (CAR) (14:1), CAR (18:0), PE (P18:0/20:3), and PE (P18:0/20:4), and extremely positively associated with TAG (C52:2/C53:9); no obvious correlations were observed in the Normal group and the SO group.


Asunto(s)
Microbioma Gastrointestinal , Obesidad Mórbida , Síndrome de Prader-Willi , Humanos , Niño , Síndrome de Prader-Willi/genética , Obesidad/complicaciones , Índice de Masa Corporal , Lípidos
5.
Poult Sci ; 102(5): 102585, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36913758

RESUMEN

This study aimed to evaluate the individual and combined effects of chemically protected sodium butyrate (CSB) and xylo-oligosaccharide (XOS) on performance, anti-inflammatory and antioxidant capacity, intestinal morphology and microbiota of broilers. A total of 280 one-day-old Arbor Acres broilers were randomly distributed into 5 treatments: basal diet (CON), basal diet supplemented with 100 mg/kg aureomycin and 8 mg/kg enramycin (ABX), 1000 mg/kg CSB (CSB), 100 mg/kg XOS (XOS), and mixture of 1000 mg/kg CSB and 100 mg/kg XOS (MIX), respectively. On d 21, ABX, CSB, and MIX decreased feed conversion ratio compared with CON (CON: ABX: CSB: MIX = 1.29: 1.22: 1.22: 1.22), whereas body weight of CSB and MIX was increased by 6.00% and 7.93%, and average daily gain was increased by 6.62% and 8.67% at 1-21 d, respectively (P < 0.05). The main effect analysis showed that both CSB and XOS treatments increased ileal villus height and villus height to crypt depth ratio (VCR) (P < 0.05). Moreover, broilers in ABX showed lower 21.39% ileal crypt depth and higher 31.43% VCR than those in CON (P < 0.05). Dietary CSB and XOS were added individually or collectively increased total antioxidant capacity and superoxide dismutase, and anti-inflammatory cytokines interleukin-10 and transforming growth factor-ß, whereas decreased malondialdehyde, and proinflammatory cytokines IL-6 and tumor necrosis factor-α content in serum (P < 0.05). Meanwhile, MIX showed the best effect of antioxidant and anti-inflammatory capacity among the 5 groups (P < 0.05). There was an interaction between CSB and XOS treatments on increasing cecal acetic acid, propionic acid, butyric acid and total short-chain fatty acid (SCFA) (P < 0.05), and the one-way ANOVA showed that propionic acid in CSB was 1.54 times that of CON, whereas butyric acid and total SCFAs in XOS were 1.22 times and 1.28 times that of CON, respectively (P < 0.05). Furthermore, dietary combination of CSB and XOS changed phyla Firmicutes and Bacteroidota, and increased genera Romboutsia and Bacteroides (P < 0.05). In conclusion, dietary CSB and XOS improved growth performance of broilers, and the combined addition of them had the best effect on anti-inflammatory and antioxidant capacity, and intestinal homeostasis of broilers in current study, indicating that it may be a potential natural alternative to antibiotics.


Asunto(s)
Antioxidantes , Microbiota , Animales , Ácido Butírico/farmacología , Pollos , Suplementos Dietéticos/análisis , Dieta/veterinaria , Oligosacáridos/farmacología , Alimentación Animal/análisis
6.
Nat Commun ; 13(1): 7154, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36418289

RESUMEN

In aqueous mediums, the chemical environment for catalytic reactions is not only comprised of water molecules but also of corresponding ionized species, i.e., hydronium ions, which can impact the mechanism and kinetics of a reaction. Here we show that in aqueous-phase hydrogenation of furfural on Pd/C, increasing the hydronium ion activities by five orders of magnitude (from pH 7 to pH 1.6) leads to an increase of less than one order of magnitude in the reaction rate. Instead of a proton-coupled electron transfer pathway, our results show that a Langmuir-Hinshelwood mechanism describes the rate-limiting hydrogen addition step, where hydrogen atom adsorbed on Pd is transferred to the carbonyl C atom of the reactant. As such, the strength of hydrogen binding on Pd, which decreases with increasing hydronium ion concentration (i.e., 2 kJ molH2-1 per unit pH), is a decisive factor in hydrogenation kinetics (rate constant +270%). In comparison, furfural adsorption on Pd is pH-independent, maintaining a tilted geometry that favors hydrogen attack at the carbonyl group over the furan ring.


Asunto(s)
Furaldehído , Paladio , Furaldehído/química , Hidrogenación , Paladio/química , Protones , Hidrógeno , Agua/química
7.
Int J Mol Sci ; 23(19)2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36232620

RESUMEN

Mining of Phospholipase D (PLD) with high activity and stability has attracted strong interest for investigation. A novel PLD from marine Moritella sp. JT01 (MsPLD) was biochemically and structurally characterized in our previous study; however, the short half-life time (t1/2) under its optimum reaction temperature seriously hampered its further applications. Herein, the disulfide bond engineering strategy was applied to improve its thermostability. Compared with wild-type MsPLD, mutant S148C-T206C/D225C-A328C with the addition of two disulfide bonds exhibited a 3.1-fold t1/2 at 35 °C and a 5.7 °C increase in melting temperature (Tm). Unexpectedly, its specific activity and catalytic efficiency (kcat/Km) also increased by 22.7% and 36.5%, respectively. The enhanced activity might be attributed to an increase in the activation entropy by displacing more water molecules by the transition state. The results of molecular dynamics simulations (MD) revealed that the introduction of double disulfide bonds rigidified the global structure of the mutant, which might cause the enhanced thermostability. Finally, the synthesis capacity of the mutant to synthesize phosphatidic acid (PA) was evaluated. The conversion rate of PA reached about 80% after 6 h reaction with wild-type MsPLD but reached 78% after 2 h with mutant S148C-T206C/D225C-A328C, which significantly reduced the time needed for the reaction to reach equilibrium. The present results pave the way for further application of MsPLD in the food and pharmaceutical industries.


Asunto(s)
Moritella , Fosfolipasa D , Disulfuros/química , Estabilidad de Enzimas , Ácidos Fosfatidicos , Fosfolipasa D/genética , Ingeniería de Proteínas/métodos , Temperatura , Agua
8.
Int J Mol Sci ; 23(19)2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36232934

RESUMEN

A new phospholipase D from marine Moritella sp. JT01 (MsPLD) was recombinantly expressed and biochemically characterized. The optimal reaction temperature and pH of MsPLD were determined to be 35 °C and 8.0. MsPLD was stable at a temperature lower than 35 °C, and the t1/2 at 4 °C was 41 days. The crystal structure of apo-MsPLD was resolved and the functions of a unique extra loop segment on the enzyme activity were characterized. The results indicated that a direct deletion or fastening of the extra loop segment by introducing disulfide bonds both resulted in a complete loss of its activity. The results of the maximum insertion pressure indicated that the deletion of the extra loop segment significantly decreased MsPLD's interfacial binding properties to phospholipid monolayers. Finally, MsPLD was applied to the synthesis of phosphatidic acid by using a biphasic reaction system. Under optimal reaction conditions, the conversion rate of phosphatidic acid reached 86%. The present research provides a foundation for revealing the structural-functional relationship of this enzyme.


Asunto(s)
Moritella , Fosfolipasa D , Cristalización , Disulfuros , Ácidos Fosfatidicos/metabolismo , Fosfolipasa D/metabolismo
9.
Carbohydr Polym ; 294: 119776, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35868753

RESUMEN

Xylooligosaccharide (XOS) has tremendous prebiotic potentials for gut health, but the relevant mechanisms are unclear. Herein, we confirmed the positive effects of dietary XOS enhancing gut barrier in a pig model via suppressing the expression of pro-inflammatory cytokines (IL-6 and IL-8). Meanwhile, XOS increased beneficial microbes Lactobacillus and decreased potential pathogenic bacteria. Moreover, XOS augmented microbiota-derived metabolites (mainly butyrate, propionate, and secondary bile acid) to strengthen the gut barrier and regulate gut immunity through activating host G-protein coupled receptors 109a or inhibiting histone deacetylases. Furthermore, XOS attenuated IgA-production and antigen cross-presentation processes. In addition, XOS supplementation led to the alteration of cell proliferation, remodeling of the energy metabolism, activation processes of serial genes or proteins, increased molecular chaperones, and the enhanced ubiquitin-proteasome pathway in cecal cells. Collectively, these results suggest that XOS enhances gut barrier and modulates gut immunity by optimizing gut microbiota and their metabolites, which is associated with alterations of biological processes.


Asunto(s)
Microbioma Gastrointestinal , Animales , Glucuronatos/metabolismo , Oligosacáridos/metabolismo , Oligosacáridos/farmacología , Prebióticos , Porcinos
10.
Antibiotics (Basel) ; 11(2)2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35203735

RESUMEN

The purpose of this study was to investigate the effects of chemically protected sodium butyrate (CSB) on growth performance and the early development and function of small intestine in broilers as one potential substitute for antibiotics. A total of 192 one-day-old Arbor Acres male broilers were randomly assigned into three dietary treatment groups (eight replicates per treatment): the control (CON) diet; ANT diet, CON diet supplemented with the antibiotics (enramycin, 8 mg/kg and aureomycin, 100 mg/kg); CSB diet, CON diet supplemented with 1000 mg/kg CSB, respectively. The results showed that dietary CSB and antibiotics addition significantly improved the growth performance of broilers by increasing the body weight gain (BWG) and feed conversion ratio (FCR) during different stages (p < 0.05). On day 21, the supplement of CSB in diet improved the structure of small intestine (duodenum, jejunum, and ileum) in broilers by increasing the ratio of villus height to crypt depth (VH/CD) (p < 0.05) and enhanced the butyric acid (BA) (p < 0.05) and total short chain fatty acids (SCFA) concentrations of small intestine (jejunum and ileum) compared with the CON and ANT diets. Besides that, the superoxide dismutase (SOD), total antioxidant capacity (TAC) and TAC to malondialdehyde (TAC/MDA) ratio of the ileal and jejunal mucosa were significantly higher (p < 0.05) in the CSB and ANT than in the CON. In addition, the supplement of CSB in diet markedly significantly enhanced α-amylase, lipase, and trypsin activities of the ileum (p < 0.05) as compared to the ANT diet. 16S rRNA gene sequencing indicated that CSB markedly increased the microbiota diversity of ileum in broilers at 21 days of age as compared to CON and ANT (p < 0.05). Furthermore, we found that Firmicutes was the predominant phyla and Lactobacillus was the major genus in the ileum of broilers. Compared with the ANT diet, the supplement of CSB in diet increased the relative abundance of some genera microbiota (e.g., Candidatus_Arthromitus, Romboutsia) by decreasing the relative abundance of Lactobacillus. Moreover, Akkermansia in the CSB was the highest in comparison to that in the CON and ANT. In addition, Kitasatospora that belongs to the phylum Actinobacteriota was only found in ileum of broilers fed the ANT diet. In summary, the supplement of 1000 mg/kg CSB in the diet improved the growth performance by promoting early development and function of the small intestine, which is associated with the regulation of intestinal flora and reestablishment of micro-ecological balance in broilers. Thus, CSB has great potential value as one of effective substitutes for in-feed antibiotics in the broiler industry.

11.
Langmuir ; 30(8): 1926-31, 2014 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-24499416

RESUMEN

The present study prepared a size-controllable, uniform, and surfactant-free emulsification to investigate the ζ potential of the solvent effect. The results showed that the ratio of electrophoretic mobility changed with droplet diameter, and the correct factor of the ζ potential was determined. The effect of functional groups on the ζ potential was further studied in the presence of an organic hydrophilic solvent. The study characterized the effects of pH, ionic strength, and ionic type on the ζ potential and indicated that the solvents were able to modulate the local electrochemical environment, thus leading to the redistribution of interface charges.

12.
Phytochem Anal ; 24(4): 381-5, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23349010

RESUMEN

INTRODUCTION: Mogroside V is the main effective ingredient of Siraitia grosvenorii used as a natural sweet food as well as a traditional Chinese medicine. The sample pre-treatment prior to chromatographic analysis requires large amounts of toxic organic solvents and is time consuming. OBJECTIVE: To develop an effective and simple method for extracting and determining mogroside V of Siraitia grosvenorii. METHODS: Mogroside V was extracted and preconcentrated by micelle-mediated cloud-point extraction with nonionic surfactant isotridecyl poly (ethylene glycol) ether (Genapol® X-080). The obtained solutions containing mogroside V were analysed by high-performance liquid chromatography (HPLC) with ultraviolet (UV) detection. The chromatographic separation was performed on a C18 -column using gradient elution with acetonitrile and water at 203 nm. RESULTS: The cloud-point extraction yield was 80.7% while the pre-concentration factor was about 10.8. The limit of detection was 0.75 µg/mL and the limit of quantification was 2 µg/mL. The relative standard deviations for intra- and interday precisions of mogroside V were less than 8.68% and 5.78%, respectively, and the recoveries were between 85.1% and 103.6%. CONCLUSION: The HPLC-UV method based on micelle-mediated cloud-point extraction for determination mogroside V in Siraitia grosvenorii was environmentally friendly, simple and sensitive.


Asunto(s)
Fraccionamiento Químico/métodos , Cromatografía Líquida de Alta Presión/métodos , Cucurbitaceae/química , Triterpenos/análisis , Acetonitrilos/química , Fraccionamiento Químico/instrumentación , Límite de Detección , Medicina Tradicional China , Micelas , Reproducibilidad de los Resultados , Solventes/química , Tensoactivos/química , Rayos Ultravioleta
13.
J Colloid Interface Sci ; 362(1): 228-34, 2011 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-21723561

RESUMEN

Three-liquid-phase partitioning of Pd(II), Pt(IV) and Rh(III) in systems of S201(diisoamyl sulfide)/nonane-EOPO(polyethylene oxide-polypropylene oxide random block copolymer)-Na(2)SO(4)-H(2)O was investigated. Experimental results indicated that the selective enrichment of Pd(II), Pt(IV) and Rh(III) respectively into the S201 organic top phase, EOPO-based middle phase and Na(2)SO(4) bottom phase was achieved by control over the phase behavior of the three-liquid-phase systems (TLPS). The microphase mass transfer behavior of Pt(IV), Pd(II) and Rh(III) was closely related to the micellization of EOPO molecules. A suggested micro-mechanism model and a mass transfer model describe the micellization of EOPO molecules and the effect on mass transfer of platinum ions across the microphase interfaces. The salting-out induced continuous dehydration and ordered arrangement of the hydrophilic PEO segments in amphiphilic EOPO micelle, and these are the main driving forces for mass transfer of platinum metal ions onto the exposed activity sites of the dehydrated PEO segments. The differences in microphase interfacial structure of EOPO micelles are crucial for the efficient separation between Pt(IV), Pd(II) and Rh(III).


Asunto(s)
Micelas , Paladio/química , Platino (Metal)/química , Polímeros/química , Rodio/química , Transición de Fase
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...