Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Nanobiotechnology ; 22(1): 522, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39215337

RESUMEN

Titanium alloys represent the prevailing material employed in orthopedic implants, which are present in millions of patients worldwide. The prolonged presence of these implants in the human body has raised concerns about possible health effects. This study presents a comprehensive analysis of titanium implants and surrounding tissue samples obtained from patients who underwent revision surgery for therapeutic reasons. The surface of the implants exhibited nano-scale corrosion defects, and nanoparticles were deposited in adjacent samples. In addition, muscle in close proximity to the implant showed clear evidence of fibrotic proliferation, with titanium content in the muscle tissue increasing the closer it was to the implant. Transcriptomics analysis revealed SNAI2 upregulation and activation of PI3K/AKT signaling. In vivo rodent and zebrafish models validated that titanium implant or nanoparticles exposure provoked collagen deposition and disorganized muscle structure. Snai2 knockdown significantly reduced implant-associated fibrosis in both rodent and zebrafish models. Cellular experiments demonstrated that titanium dioxide nanoparticles (TiO2 NPs) induced fibrotic gene expression at sub-cytotoxic doses, whereas Snai2 knockdown significantly reduced TiO2 NPs-induced fibrotic gene expression. The in vivo and in vitro experiments collectively demonstrated that Snai2 plays a pivotal role in mediating titanium-induced fibrosis. Overall, these findings indicate a significant release of titanium nanoparticles from the implants into the surrounding tissues, resulting in muscular fibrosis, partially through Snai2-dependent signaling.


Asunto(s)
Fibrosis , Factores de Transcripción de la Familia Snail , Titanio , Pez Cebra , Titanio/química , Animales , Factores de Transcripción de la Familia Snail/metabolismo , Factores de Transcripción de la Familia Snail/genética , Humanos , Prótesis e Implantes , Masculino , Transducción de Señal/efectos de los fármacos , Nanopartículas del Metal/química , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Ratas , Ratones
2.
Sci Total Environ ; 951: 175711, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39181255

RESUMEN

The widespread utilization of plastic and cobalt alloy products in industries and medicine has led to the increased presence of their degradation byproducts, microplastics (MPs), and cobalt nanoparticles (Co NPs), in the environment and organisms. While these particles can circulate throughout the body via the circulatory system, their specific adverse effects and mechanisms on the vascular system remain unclear. Employing scanning electron microscope (SEM) analysis and other methodologies, we demonstrate the potential adsorption and aggregation phenomena between MPs and Co NPs. In vitro experiments illustrate that ingestion of either MPs or Co NPs compromises vascular endothelial cell function and induces the generation of reactive oxygen species (ROS). Notably, this effect is markedly attenuated when a combination of MPs and Co NPs is administered compared to MPs alone. Additionally, zebrafish experiments validate our in vitro findings. Mechanistic studies have demonstrated that both MPs and Co NPs induce aberrant Nuclear factor erythroid 2-related factor 2 (Nrf2) signaling. Intriguingly, a weaker activation level is observed when these agents are administered in combination compared to when they are administered individually. Our study provides novel insights into the interaction between MPs and Co NPs and their detrimental effects on vascular endothelial cells.


Asunto(s)
Cobalto , Nanopartículas del Metal , Microplásticos , Factor 2 Relacionado con NF-E2 , Pez Cebra , Factor 2 Relacionado con NF-E2/metabolismo , Cobalto/toxicidad , Animales , Nanopartículas del Metal/toxicidad , Microplásticos/toxicidad , Transducción de Señal/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Contaminantes Químicos del Agua/toxicidad
3.
Adv Mater ; : e2405943, 2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39155588

RESUMEN

Osteoarthritis (OA) is a degenerative bone and joint disease characterized by decreased cartilage lubrication, leading to continuous wear and ultimately irreversible damage. This situation is particularly challenging for early-stage OA, as current bio-lubricants lack precise targeting for small inflammatory lesions. In this work, an antibody-mediated targeting hydrogel microspheres (HMS) is developed to precisely lubricate the local injury site of cartilage and prevent the progression of early OA. Anti-Collagen type I (Anti-Col1) is an antibody that targets cartilage injury sites in early OA stages. It is anchored on a HMS matrix made of Gelatin methacrylate (GelMA) and poly (sulfobetaine methacrylate) (PSBMA) to create targeted HMS (T-G/S HMS). The T-G/S HMS's high hydrophilicity, along with the dynamic interaction between its surficial Anti-Col1 and the Col1 on cartilage injury site, ensures its precise and effective lubrication of early OA lesions. Consequently, injecting T-G/S HMS into rats with early OA significantly slows disease progression and reduces symptoms. In conclusion, the developed injectable targeted lubricating HMS and the precisely targeted lubrication strategy represent a promising, convenient technique for treating OA, particularly for slowing the early-stage OA progression.

4.
J Comp Neurol ; 532(8): e25661, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39139013

RESUMEN

Vision plays a crucial role in the survival of animals, and the visual system has particularly selectively evolved in response to the visual environment, ecological niche, and species habitats in vertebrate species. To date, a horizontal streak of retinal ganglion cell (RGC) distribution pattern is observed across mammal species. Here, we report that the giant panda's vertically oriented visual streak, combined with current evidence of the animal's forward-placed eyes, ocular structure, and retinal neural topographic distribution patterns, presents the emergence of a well-adapted binocular visual system. Our results suggest that the giant panda may use a unique way to processing binocular visual information. Results of mathematical simulation are in favor of this hypothesis. The topographic distribution properties of RGCs reported here could be essential for understanding the visual adaptation and evolution of this living fossil.


Asunto(s)
Células Ganglionares de la Retina , Ursidae , Animales , Células Ganglionares de la Retina/citología , Ursidae/anatomía & histología , Ursidae/fisiología , Retina/citología , Retina/anatomía & histología
5.
Animals (Basel) ; 14(16)2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39199858

RESUMEN

Proper feeding and nutrition are vital for maintaining the health of giant pandas (GPs), yet the impact of dietary changes and gut microbiota on their nutrient utilization remains unclear. To address these uncertainties, we investigated nutrient intake and apparent digestibility, as well as gut microbiota composition across different age groups of giant pandas: sub-adults (SGPs), adults (AGPs), and geriatrics (GGPs). Our findings revealed notable shifts in dietary patterns from SGPs to GGPs. As they aged, significantly more bamboo shoots and less bamboo were consumed. Consequently, GGPs showed significantly reduced crude fiber (CF) intake and digestibility, while crude protein (CP) did not alter significantly. In addition, 16S rRNA microbial sequencing results showed that unidentified_Enterobacteriaceae and Streptococcus were the dominant genera among all age groups. The relative abundance of the genus Enterococcus in GGPs was significantly higher than that in SGPs and AGPs (p < 0.05). Overall, our results indicated the importance of bamboo shoots as a major source of protein in GGPs' diet, which can effectively compensate for the certain nutritional loss caused by the reduction in bamboo intake. Age-related changes in bacterial abundance have an effect on specific nutrient apparent digestibility in the gut of GPs. The data presented in this study serve as a useful reference for nutritional management in different ages of GPs under healthy conditions.

6.
J Vet Dent ; : 8987564241265420, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39042890

RESUMEN

Giant pandas have a high incidence of tooth wear, loss, and fracture since their diet is specifically bamboo. Dental implantation is a common treatment for tooth loss in humans while rarely reported in wild animals. To explore the applicability of dental implantation in giant pandas, this study measured mandible parameters of the giant panda, from an adult skeletal specimen. The mandible bone block model was developed using computer-aided design 3D mechanical drawing software. Implants of different radius and thread types of the third premolar tooth (PM3) were assembled and imported into an analysis software system for finite element analysis. As a result, the reverse buttress implant with a radius of 7.5 mm and 8.3 mm, and a length of 15 mm was found to be the most suitable implant for use in the giant panda PM3. This study provides a reference for appropriate clinical giant panda dental implantation, although, the feasibility of giant panda dental implantation needs to be studied further.

7.
Imeta ; 3(1): e171, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38868505

RESUMEN

In this study, we have successfully constructed a comprehensive database of metagenome-assembled genomes (MAGs) pertaining to the gut microbiota of the giant panda. Through our analysis, we have identified significant reservoirs of antibiotic resistance genes (ARGs), namely Escherichia coli, Citrobacter portucalensis, and Klebsiella pneumoniae. Furthermore, we have elucidated the primary contributors to ARGs, including Streptococcus alactolyticus and Clostridium SGBP116, in both captive and wild pandas. Additionally, our findings have demonstrated a higher prevalence of ARGs in the metagenome, with notable expression of the RPOB2 gene in S. alactolyticus. Crucially, 1217 ARGs shared homology with human gut ARGs, underscoring the interaction relationship between pandas and human microbiomes. These findings are instrumental in understanding the antibiotic resistance landscape in the giant panda's gut, providing a framework for developing strategies to combat antibiotic resistance and safeguard the health of this endangered species.

8.
Ecotoxicol Environ Saf ; 278: 116395, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38728939

RESUMEN

Escherichia coli (E. coli) plays an important ecological role, and is a useful bioindicator to recognize the evolution of resistance in human, animal and environment. Recently, extended-spectrum ß-lactamases (ESBL) producing E.coli has posed a threat to public health. Generally, captive healthy giant pandas are not exposed to antibiotics; however, they still acquire antimicrobial resistant bacteria. In order to understand whether there is an exchange of resistance genes within the ecosystems of captive giant pandas, this study explored resistance characteristics of 330 commensal E. coli isolates from feces of giant pandas, the surroundings, and breeders. Isolates from different sources showed similar resistance phenotype, and ESBL/AmpC-producing isolates showed more profound resistance to antibiotics than non-ESBL/AmpC-producing isolates (P<0.05). Furthermore, the occurrence of broad-spectrum ß-lactamase related resistance genes and colistin resistance genes was detected, and isolates phylogenetic typing and multilocus sequence typing (MLST) were applied in this study. Seven different ß-lactamase resistance genes (blaCTX-M-55, blaCTX-M-15, blaCTX-M-27, blaCTX-M-65, blaTEM-1, blaOXA-1 and blaCMY) and mcr-1 were found in 68 ESBL/AmpC-producing isolates. blaCTX-M-55 (48.53 %) was found the most predominant resistance genes, followed by blaTEM-1 (19.12 %) and blaCTX-M-27 (16.18 %). Nonetheless, blaCTX-M-55 was commonly detected in the isolates from giant pandas (63.16 %), the surroundings (43.48 %), and breeders (33.33 %). However, there were no carbapenemase genes detected in this study. mcr-1 was harbored in only one isolate from giant panda. Forty-five tansconjugants were successfully obtained in the conjugation experiments. The presence of antimicrobial resistance and related resistance genes tested were observed in the transconjugants. The results indicated that 52.63 % of the isolates from giant panda 73.91 % of the isolates from surroundings, and 100 % of the isolates from breeders were phylogroup A. Total of 27 sequence types (ST) were recognized from the isolate by MLST and found that ST48 (19/68; 27.94 %) was the predominant ST type, especially in the isolates from giant pandas and the surroundings. In conclusion, commensal ESBL/AmpC-producing E. coli becomes a reservoir of ESBL resistance genes, which is a potential threaten to health of giant pandas. The interaction between giant pandas, surroundings and breeders contribute to development of resistant phenotypes and genotypes which might transfer across species or the surroundings easily; hence, strict monitoring based on a "One Health" approach is recommended.


Asunto(s)
Antibacterianos , Proteínas Bacterianas , Escherichia coli , Heces , Tipificación de Secuencias Multilocus , Ursidae , beta-Lactamasas , Animales , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , beta-Lactamasas/genética , Ursidae/microbiología , China , Antibacterianos/farmacología , Heces/microbiología , Proteínas Bacterianas/genética , Ecosistema , Filogenia , Pruebas de Sensibilidad Microbiana , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/veterinaria , Farmacorresistencia Bacteriana Múltiple/genética , Farmacorresistencia Bacteriana/genética
9.
Antioxidants (Basel) ; 13(4)2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38671878

RESUMEN

Iron overload-associated osteoporosis presents a significant challenge to bone health. This study examines the effects of arecoline (ACL), an alkaloid found in areca nut, on bone metabolism under iron overload conditions induced by ferric ammonium citrate (FAC) treatment. The results indicate that ACL mitigates the FAC-induced inhibition of osteogenesis in zebrafish larvae, as demonstrated by increased skeletal mineralization and upregulation of osteogenic genes. ACL attenuates FAC-mediated suppression of osteoblast differentiation and mineralization in MC3T3-E1 cells. RNA sequencing analysis suggests that the protective effects of ACL are related to the regulation of ferroptosis. We demonstrate that ACL inhibits ferroptosis, including oxidative stress, lipid peroxidation, mitochondrial damage, and cell death under FAC exposure. In this study, we have identified heme oxygenase-1 (HO-1) as a critical mediator of ACL inhibiting ferroptosis and promoting osteogenesis, which was validated by HO-1 knockdown and knockout experiments. The study links ACL to HO-1 activation and ferroptosis regulation in the context of bone metabolism. These findings provide new insights into the mechanisms underlying the modulation of osteogenesis by ACL. Targeting the HO-1/ferroptosis axis is a promising therapeutic approach for treating iron overload-induced bone diseases.

10.
Toxics ; 12(2)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38393225

RESUMEN

Cobalt alloys have numerous applications, especially as critical components in orthopedic biomedical implants. However, recent investigations have revealed potential hazards associated with the release of nanoparticles from cobalt-based implants during implantation. This can lead to their accumulation and migration within the body, resulting in adverse reactions such as organ toxicity. Despite being a primary interface for cobalt nanoparticle (CoNP) exposure, skeletal muscle lacks comprehensive long-term impact studies. This study evaluated whether selenium nanoparticles (SeNPs) could mitigate CoNP toxicity in muscle cells and zebrafish models. CoNPs dose-dependently reduced C2C12 viability while elevating reactive oxygen species (ROS) and apoptosis. However, low-dose SeNPs attenuated these adverse effects. CoNPs downregulated myogenic genes and α-smooth muscle actin (α-SMA) expression in C2C12 cells; this effect was attenuated by SeNP cotreatment. Zebrafish studies confirmed CoNP toxicity, as it decreased locomotor performance while inducing muscle injury, ROS generation, malformations, and mortality. However, SeNPs alleviated these detrimental effects. Overall, SeNPs mitigated CoNP-mediated cytotoxicity in muscle cells and tissue through antioxidative and antiapoptotic mechanisms. This suggests that SeNP-coated implants could be developed to eliminate cobalt nanoparticle toxicity and enhance the safety of metallic implants.

11.
Phytomedicine ; 124: 155284, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38176267

RESUMEN

BACKGROUND: Osteoporosis is a systemic skeletal disorder characterized by decreased bone density and the degradation of bone tissue microarchitecture. Ginsenoside Rg1, derived from Panax ginseng, has been a part of traditional Chinese medicine in China for centuries, particularly for treating osteoporosis. However, there remains limited research on the osteogenic potential of Rg1 within the glucocorticoid-induced osteoporosis (GIOP) model and its specific mechanisms. PURPOSE: The primary objective of this study is to investigate the osteogenic potential of Rg1 within the GIOP model and explore the signaling pathways associated with its in vivo and in vitro effects. METHODS: Cell proliferation, differentiation and mineralization were evaluated by the Cell counting kit 8(CCK8) assay, alkaline phosphatase (ALP) test and Alizarin Red S staining, respectively. The qPCR technique was used to determine the relative expression of mRNA and the western blot was used to determine the relative expression of protein. In vivo experiments, spinal vertebrae staining in zebrafish larvae was accomplished by alizarin red S staining. RESULTS: Zebrafish larvae's hatching, survival, malformation, and heart rate were unaffected by 50 µM of Rg1 in vivo, while the MEC3T3-E1 cell line's proliferation was unaffected by 50 µM of Rg1 in vitro. Meanwhile, Rg1 was shown to improve osteogenic differentiation or bone formation as well as the level of mRNA expression of osteogenic markers in vivo and in vitro. Treatment with Rg1 significantly increased the expression of G protein-coupled estrogen receptor (GPER) and pAKT. In addition, the GPER inhibitor G15 could significantly reduce the mRNA and protein expression levels of GPER and phosphorylated AKT, LY294002, a PI3K/AKT pathway inhibitor, markedly suppresses the expression of phosphorylated AKT, yet shows no significant impact on GPER expression. Both G15 and LY294002 can significantly blocked the Rg1-mediated enhancement of osteogenesis capacity in the GIOP model. In contrast, when both the agonists G1 of GPER and LY294002 were added, G1 increased the relative expression of mRNA and protein of GPER, but not the expression of osteogenic capacity and osteogenic markers. CONCLUSIONS: This study investigates the mineralization effects and mechanisms of Ginsenoside Rg1 both in vitro and in vivo. For the first time, we propose that Rg1 might regulate osteogenesis by modulating AKT phosphorylation through mediating GPER expression within the PI3K/AKT pathway in the GIOP model. This discovery introduces novel targets and avenues for osteoporosis treatment.


Asunto(s)
Antraquinonas , Ginsenósidos , Osteogénesis , Osteoporosis , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Pez Cebra/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Diferenciación Celular , Estrógenos/farmacología , Glucocorticoides , ARN Mensajero
12.
Microbiome ; 11(1): 180, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37580828

RESUMEN

BACKGROUND: The gut microbiota of the giant panda (Ailuropoda melanoleuca), a global symbol of conservation, are believed to be involved in the host's dietary switch to a fibrous bamboo diet. However, their exact roles are still largely unknown. RESULTS: In this study, we first comprehensively analyzed a large number of gut metagenomes giant pandas (n = 322), including 98 pandas sequenced in this study with deep sequencing (Illumina) and third-generation sequencing (nanopore). We reconstructed 408 metagenome-assembled genomes (MAGs), and 148 of which (36.27%) were near complete. The most abundant MAG was classified as Streptococcus alactolyticus. A pairwise comparison of the metagenomes and meta-transcriptomes in 14 feces revealed genes involved in carbohydrate metabolism were lower, but those involved in protein metabolism were greater in abundance and expression in giant pandas compared to those in herbivores and omnivores. Of note, S. alactolyticus was positively correlated to the KEGG modules of essential amino-acid biosynthesis. After being isolated from pandas and gavaged to mice, S. alactolyticus significantly increased the relative abundance of essential amino acids in mice jejunum. CONCLUSIONS: The study highlights the unique protein metabolic profiles in the giant panda's gut microbiome. The findings suggest that S. alactolyticus is an important player in the gut microbiota that contributes to the giant panda's dietary adaptation by more involvement in protein rather than carbohydrate metabolism. Video Abstract.


Asunto(s)
Microbioma Gastrointestinal , Ursidae , Animales , Ratones , Microbioma Gastrointestinal/genética , Heces/química , Metagenoma , Dieta
13.
Int J Biol Macromol ; 253(Pt 1): 126600, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37652317

RESUMEN

Glucocorticoid-induced osteoporosis (GIOP) represents the foremost cause of secondary osteoporosis and fragility fractures. Novel therapeutic strategies for GIOP are needed, with improved safety profiles and reduced costs compared to current options. Dendrobium officinale (D. officinale) is a traditional Chinese medicine that has been reported to have beneficial effects on bone metabolism. Here, we sought to investigate the impacts of D. officinale polysaccharides (DOP), the main active constituents of D. officinale, on GIOP in vivo models and dexamethasone (DEX)-treated osteoblast lineage cells. We found that low concentrations of DOP are relatively safe in vitro and in vivo, respectively. Importantly, we found that DOP treatment significantly inhibited DEX-induced osteoporosis in two in vivo models, zebrafish and mice, while boosting osteogenic differentiation of hBMSCs exposed to DEX. Futhermore, our data reveal that DOP elevates nuclear Nrf2 levels under DEX treatment, by suppressing of Nrf2 ubiquitination. Leveraging Keap1b knockout zebrafish and RNAi approach, we demonstrated that DOP disrupts the association of Nrf2/Keap1, resulting in the inhibition of Nrf2 ubiquitination. Taken together, these results illuminate that DOP stimulates osteogenesis in the presence of DEX by destabilizing the Nrf2/Keap1 interaction. These findings suggest that DOP may serve as a novel drug against osteoporosis caused by glucocorticoids.


Asunto(s)
Dendrobium , Osteoporosis , Ratones , Animales , Glucocorticoides/efectos adversos , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Pez Cebra/metabolismo , Osteogénesis , Polisacáridos/efectos adversos , Osteoporosis/inducido químicamente , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo , Proteínas Portadoras/farmacología , Proteínas de Pez Cebra/metabolismo
14.
Ann N Y Acad Sci ; 1526(1): 114-125, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37347427

RESUMEN

Mucopolysaccharidoses (MPS) are a group of rare congenital metabolic disorders caused by the deficiency or low activity of enzymes required for glycosaminoglycans degradation. Mutations in the α-l-iduronidase gene (IDUA) are associated with mucopolysaccharidosis type I (MPS I). Our study here aims to identify an MPS-related gene mutation in a typical patient with MPS and to further explore the possible pathogenic mechanism. We identified a homozygous c. 2T>C (p.M1T) change in IDUA as the pathogenic mutation in this individual (both parents were identified as carriers of the mutation), with IDUA enzyme activity significantly decreased. We further established an MPS I-related zebrafish model using IDUA-specific morpholino (MO) to suppress gene expression, and found that IDUA-MO zebrafish exhibited characteristic disease phenotypes with deficiency of IDUA. Transcriptome profiling of zebrafish larvae revealed 487 genes that were significantly altered when IDUA was depleted. TP53 signaling and LC3/GABARAP family protein-mediated autophagy were significantly upregulated in IDUA-MO zebrafish larvae. Moreover, leukotriene A4 hydrolase-mediated arachidonic acid metabolism was also upregulated. Introduction of wild-type human IDUA mRNA rescued developmental defects and aberrant signaling in IDUA-MO zebrafish larvae. In conclusion, our study provides potential therapeutic targets for the treatment of MPS I.


Asunto(s)
Mucopolisacaridosis I , Animales , Humanos , Mucopolisacaridosis I/genética , Mucopolisacaridosis I/patología , Iduronidasa/genética , Iduronidasa/metabolismo , Pez Cebra/genética , Pueblos del Este de Asia , Mutación
15.
Sci Rep ; 13(1): 6262, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-37069183

RESUMEN

Bamboo is the main food source of the giant panda. To increase bamboo intake in captive giant pandas, we studied factors affecting the bamboo intake. Fourteen healthy captive giant pandas in Dujiangyan Base of China Conservation and Research Center for The Giant Panda ("Dujiangyan Base" for short) were selected as research objects. A bamboo feeding experiment was conducted to study the effects of seasons, bamboo age, slope orientations where bamboo grows and felling-feeding time on bamboo intake of the giant panda. We found that the type of bamboo that captive giant pandas feed on was abundant in spring and summer, but relatively homogeneous in winter. With the increase of bamboo age, the intake of bamboo leaves decreased, while bamboo culms increased. The feed intake of 1-year-old bamboo leaves and 5-year-old bamboo culms reached the highest respectively. The slope orientation also affected the panda's bamboo intake, and the bamboo growing on sunny slopes or semi-sunny slopes was more favored by captive giant pandas. Moreover, the bamboo intake reached the highest when felling-feeding time was less than 24 h. In short, we confirmed that seasons, bamboo age, slope orientations and felling-feeding time were factors affecting bamboo intake for captive giant pandas. This study was expected to provide scientific guidance improving the feeding behavior management of captive giant pandas.


Asunto(s)
Ursidae , Animales , Conducta Alimentaria , Hojas de la Planta , Ingestión de Alimentos , Alimentos
16.
Parasitol Res ; 122(2): 493-496, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36471090

RESUMEN

Toxoplasmosis, caused by Toxoplasma gondii, is a worldwide zoonosis. The aim of the present study was to detect the seroprevalence of T. gondii infection and associated risk factors among Siberian tigers (Panthera tigris altaica) and giant pandas (Ailuropoda melanoleuca) in China. Blood samples from 112 Siberian tigers and 22 giant pandas were tested for immunoglobulin G (IgG) against T. gondii by enzyme-linked immunosorbent assay (ELISA). The seroprevalence of T. gondii infection was 7.14% among Siberian tigers and 9.09% among giant pandas. No risk factors were found to be significantly associated with seroprevalence (P > 0.05). This is the first study to evaluate T. gondii infection in Siberian tigers on a large scale in China, and it also updates the information regarding the positivity rate of T. gondii infection among giant pandas in China.


Asunto(s)
Tigres , Toxoplasma , Toxoplasmosis , Ursidae , Animales , Humanos , Estudios Seroepidemiológicos , China/epidemiología , Anticuerpos Antiprotozoarios
17.
Vet Sci ; 9(12)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36548828

RESUMEN

A low reproductive rate coupled with human activities has endangered the giant panda, a species endemic to southwest China. Although giant pandas feed almost exclusively on bamboo, they retain carnivorous traits and suffer from carnivorous diseases. Additionally, their immune system is susceptible to aging, resulting in a reduced ability to respond to diseases. This study aimed to determine the genes and pathways expressed differentially with age in blood tissues. The differentially expressed genes in different age groups of giant pandas were identified by RNA-seq. The elderly giant pandas had many differentially expressed genes compared with the young group (3 years old), including 548 upregulated genes and 401 downregulated genes. Further, functional enrichment revealed that innate immune upregulation and adaptive immune downregulation were observed in the elderly giant pandas compared with the young giant pandas. Meanwhile, the immune genes in the elderly giant pandas changed considerably, including genes involved in innate immunity and adaptive immunity such as PLSCR1, CLEC7A, CCL5, CCR9, and EPAS1. Time series analysis found that giant pandas store glycogen by prioritizing fat metabolism at age 11, verifying changes in the immune system. The results reported in this study will provide a foundation for further research on disease prevention and the energy metabolism of giant pandas.

19.
Mol Ecol Resour ; 22(2): 768-785, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34549895

RESUMEN

Helminth diseases have long been a threat to the health of humans and animals. Roundworms are important organisms for studying parasitic mechanisms, disease transmission and prevention. The study of parasites in the giant panda is of importance for understanding how roundworms adapt to the host. Here, we report a high-quality chromosome-scale genome of Baylisascaris schroederi with a genome size of 253.60 Mb and 19,262 predicted protein-coding genes. We found that gene families related to epidermal chitin synthesis and environmental information processes in the roundworm genome have expanded significantly. Furthermore, we demonstrated unique genes involved in essential amino acid metabolism in the B. schroederi genome, inferred to be essential for the adaptation to the giant panda-specific diet. In addition, under different deworming pressures, we found that four resistance-related genes (glc-1, nrf-6, bre-4 and ced-7) were under strong positive selection in a captive population. Finally, 23 known drug targets and 47 potential drug target proteins were identified. The genome provides a unique reference for inferring the early evolution of roundworms and their adaptation to the host. Population genetic analysis and drug sensitivity prediction provide insights revealing the impact of deworming history on population genetic structure of importance for disease prevention.


Asunto(s)
Ascaridoidea , Preparaciones Farmacéuticas , Ursidae , Animales , Ascaridoidea/genética , Cromosomas , Humanos , Ursidae/genética
20.
Animals (Basel) ; 13(1)2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36611749

RESUMEN

Baylisascaris schroederi is one of the main health risks threatening both wild and captive giant pandas. The administration of anthelmintics is a common method to effectively control B. schroederi infection, but there is a notable risk of anthelmintic resistance (AR) after long-term, constant use of anthelmintics. Four anthelmintics-pyrantel pamoate (PYR), mebendazole (MBZ), albendazole (ABZ), and ivermectin (IVM)-were each administered separately at intervals of 2 months to 22 enrolled giant pandas. The fecal egg count reduction (FECR) proportions were calculated by both the Markov chain Monte Carlo (MCMC) Bayesian mathematical model and the arithmetic mean. AR was assessed based on the criteria recommended by the World Association for the Advancement of Veterinary Parasitology (WAAVP). The estimated prevalence of B. schroederi infection was 34.1%. After treatment with PYR, MBZ, ABZ, and IVM, it was determined that MBZ, ABZ, and IVM were efficacious against B. schroederi, while nematodes were suspected to be resistant to PYR according to the fecal egg count reduction (FECR) proportions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...