Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 16(29): 14130-14142, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39011614

RESUMEN

Recently, water resources have become scarce due to the growing global population and human impact on the environment, coupled with the effects of climate change. For solving the problem of global freshwater shortage and increasing the value of discarded polyphenylene sulfide (PPS) filter bags, in this study, balsa wood was used as the base of a photothermal solar evaporator, chitosan solution was used as the binder, and the main photothermal conversion materials used were polyphenylene sulfide (CP) carbide and copper sulfide. In order to create synergistic photothermal conversion materials, freeze-drying and in situ precipitation were used to deposit the photothermal conversion materials on top of the balsa wood. The prepared CP/CuS-wood evaporator has excellent water evaporation performance and light conversion capability, with a water evaporation rate of 2.68 kg m-2 h-1 and a photothermal conversion efficiency of 93.2% under simulated one solar intensity irradiation. In addition, the evaporator can effectively remove organic dyes such as methylene blue and methyl orange. The evaporator's durability and seawater desalination capability have also been confirmed through seawater desalination experiments and outdoor tests. Studies have shown that solar interface photothermal evaporators are a viable solution for desalination and wastewater treatment. This eco-friendly, economically viable and stable photothermal evaporator mentioned in this paper has pioneering features and will be a new paradigm for desalination and wastewater treatment.

2.
Environ Technol ; 44(27): 4188-4198, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35608968

RESUMEN

Solar photothermal water evaporation technology has attracted attention owing to its promising applications in wastewater treatment and desalination for producing clean water. However, high-performance solar evaporators are still limited by the complex manufacturing process, less flexibility, intolerance to salt, high cost, and low water evaporation efficiency.In this study, composite fibre paper composed of waste tissue paper, aramid nanofibers, and polyaniline was prepared to produce clean water. The evaporator was designed to pump water through a cotton wick to the composite paper, which reduced heat loss and avoided the deposition of salt on the surface. The use of waste tissue paper solves the problem of waste disposal, increases the commercial value of waste tissue, and reduces production costs. The composite fibre paper exhibited broad-band light absorption of an average of 96%. The average evaporation rate of the solar evaporator was 1.43 kg m-2 h-1, and the photothermal conversion efficiency was 98.33% under 1 sun illumination. This solar evaporator is easily fabricated and is cost-effective, demonstrating the enormous potential for real-world wastewater treatment and desalination to produce clean water.


Asunto(s)
Nanofibras , Eliminación de Residuos , Agua
3.
Polymers (Basel) ; 14(17)2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36080566

RESUMEN

The heterogeneous Fenton system has drawn great attention in recent years due to its effective degradation of polluted water capability without limitation of the pH range and avoiding excess ferric hydroxide sludge. Therefore, simple chemical precipitation and vacuum filtration method for manufacturing the heterogeneous Fenton aramid nanofibers (ANFs)/ferrous oxalate (FeC2O4) composite membrane catalysts with excellent degradation of methylene blue (MB) is reported in the study. The morphology and structure of materials synthesized were characterized by scanning electron microscope (SEM), X-ray energy spectrum analysis (EDS), infrared spectrometer (FTIR), and X-ray diffraction (XRD) equipment. The 10 ppm MB degradation efficiency of composite catalyst and ferrous oxalate (FeC2O4) within 15 min were 94.5% and 91.6%, respectively. The content of methylene blue was measured by a UV-Vis spectrophotometer. Moreover, the dye degradation efficiency still could achieve 92% after five cycles, indicating the composite catalyst with excellent chemical stability and reusability. Simultaneously, the composite catalyst membrane can degrade not only MB but also rhodamine B (RB), orange II (O II), and methyl orange (MO). This study represents a new avenue for the fabrication of heterogeneous Fenton catalysts and will contribute to dye wastewater purification, especially in the degradation of methylene blue.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...