Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 14(7)2024 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-38607099

RESUMEN

In this research, nitrogen-doped diamond-like carbon (N-DLC) coatings were deposited on Nitrile Butadiene Rubber (NBR) substrates using direct current magnetron sputtering (DC-MS) under varying bias voltages. This study aimed to explore environmentally friendly, low-wear, and non-lubricating seal coatings to enhance the durability of rubber sealing products, which predominantly operate under dynamic sliding conditions. By reducing the coefficient of friction (CoF), the friction and wear on rubber products can be significantly minimized, extending their lifespan. This investigation thoroughly examined the microstructure, mechanical properties, and tribological behavior of the N-DLC films. Among the coatings, the one produced at a bias voltage of -50 V demonstrated superior hardness, elastic modulus, and the lowest CoF in comparison to those prepared with 0, -100, and -200 bias voltages. This optimal combination of properties resulted in an exceptionally low wear rate of 10-9 for the film deposited at -50 V, indicating its outstanding wear resistance.

2.
J Funct Biomater ; 14(7)2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37504885

RESUMEN

We extracted magnesium-rich calcium phosphate bioceramics from tilapia bone using a gradient thermal treatment approach and investigated their chemical and physicochemical properties. X-ray diffraction showed that tilapia fish bone-derived hydroxyapatite (FHA) was generated through the first stage of thermal processing at 600-800 °C. Using FHA as a precursor, fish bone biphasic calcium phosphate (FBCP) was produced after the second stage of thermal processing at 900-1200 °C. The beta-tricalcium phosphate content in the FBCP increased with an increasing calcination temperature. The fact that the lattice spacing of the FHA and FBCP was smaller than that of commercial hydroxyapatite (CHA) suggests that Mg-substituted calcium phosphate was produced via the gradient thermal treatment. Both the FHA and FBCP contained considerable quantities of magnesium, with the FHA having a higher concentration. In addition, the FHA and FBCP, particularly the FBCP, degraded faster than the CHA. After one day of degradation, both the FHA and FBCP released Mg2+, with cumulative amounts of 4.38 mg/L and 0.58 mg/L, respectively. Furthermore, the FHA and FBCP demonstrated superior bone-like apatite formation; they are non-toxic and exhibit better osteoconductive activity than the CHA. In light of our findings, bioceramics originating from tilapia bone appear to be promising in biomedical applications such as fabricating tissue engineering scaffolds.

3.
Adv Sci (Weinh) ; 10(25): e2301095, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37409439

RESUMEN

The service life of an artificial hip joint is limited to 10-15 years, which is not ideal for young patients. To extend the lifespan of these prostheses, the coefficient of friction and wear resistance of metallic femoral heads must be improved. In this study, a Cu-doped titanium nitride (TiNX -Cu) film with "autoantifriction" properties is deposited on a CoCrMo alloy via magnetron sputtering. When delivered in a protein-containing lubricating medium, the Cu in TiNX -Cu quickly and consistently binds to the protein molecules in the microenvironment, resulting in the formation of a stable protein layer. The proteins adsorbed on the TiNX -Cu surface decompose into hydrocarbon fragments owing to the shear stress between the Al2 O3 /TiNX -Cu tribopair. The synergistic effect of the catalysis of Cu and shear stress between the Al2 O3 /TiNX -Cu tribopair transforms these fragments into graphite-like carbon tribofilms with an antifriction property. These tribofilms can simultaneously reduce the friction coefficient of the Al2 O3 /TiNX -Cu tribopair and enhance the wear resistance of the TiNX -Cu film. Based on these findings, it is believed that the autoantifriction film can drive the generation of antifriction tribofilms for lubricating and increasing the wear resistance of prosthetic devices, thereby prolonging their lifespan.


Asunto(s)
Metales , Humanos , Aleaciones , Articulación de la Cadera
4.
Nanoscale ; 14(31): 11284-11297, 2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-35880632

RESUMEN

Management of antibiotic-resistant bacteria-induced skin infections for rapid healing remains a critical clinical challenge. Photothermal therapy, which uses mediated hyperthermia to combat such problems, has recently been recognised as a promising approach to take. In this study, bacterial cellulose-based photothermal membranes were designed and developed to combat bacterial infections and promote rapid wound healing. Polydopamine was incorporated into gold nanoparticles to produce superior dual-photothermal behaviour. The in vitro antibacterial efficacy of the prepared composite membranes against S. aureus, E. coli and methicillin-resistant Staphylococcus aureus (MRSA) could reach 99% under near-infrared (NIR) irradiation. In addition, the synthesised nanocomposite exhibited good biocompatibility in vitro as demonstrated by a cell survival ratio of >85%. The effectiveness of the composite membranes on wound healing was further investigated in a murine model of MRSA-infected wounds, focusing on the effect of photothermal temperature. According to the detailed therapeutic mechanism study undertaken, the composite membranes cause bacterial killing initially and promote the transition from the inflammatory phase to proliferation by suppressing pro-inflammatory cytokine production, promoting collagen deposition, and stimulating angiogenesis. Considering their remarkable effectiveness and facile fabrication process, it is expected that these novel materials could serve as competitive multifunctional dressings in the management of infectious wounds and accelerate the regeneration of damaged tissues related to abnormal immune responses.


Asunto(s)
Nanopartículas del Metal , Staphylococcus aureus Resistente a Meticilina , Nanocompuestos , Infección de Heridas , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Escherichia coli , Oro/farmacología , Nanopartículas del Metal/uso terapéutico , Ratones , Nanocompuestos/uso terapéutico , Staphylococcus aureus , Infección de Heridas/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA