Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
BMC Genomics ; 25(1): 578, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858635

RESUMEN

BACKGROUND: Rose myrtle (Rhodomyrtus tomentosa (Ait.) Hassk), is an evergreen shrub species belonging to the family Myrtaceae, which is enriched with bioactive volatiles (α-pinene and ß-caryophyllene) with medicinal and industrial applications. However, the mechanism underlying the volatile accumulation in the rose myrtle is still unclear. RESULTS: Here, we present a chromosome-level genomic assembly of rose myrtle (genome size = 466 Mb, scaffold N50 = 43.7 Mb) with 35,554 protein-coding genes predicted. Through comparative genomic analysis, we found that gene expansion and duplication had a potential contribution to the accumulation of volatile substances. We proposed that the action of positive selection was significantly involved in volatile accumulation. We identified 43 TPS genes in R. tomentosa. Further transcriptomic and TPS gene family analyses demonstrated that the distinct gene subgroups of TPS may contribute greatly to the biosynthesis and accumulation of different volatiles in the Myrtle family of shrubs and trees. The results suggested that the diversity of TPS-a subgroups led to the accumulation of special sesquiterpenes in different plants of the Myrtaceae family. CONCLUSIONS: The high quality chromosome-level rose myrtle genome and the comparative analysis of TPS gene family open new avenues for obtaining a higher commercial value of essential oils in medical plants.


Asunto(s)
Cromosomas de las Plantas , Evolución Molecular , Genoma de Planta , Genómica , Myrtaceae , Terpenos , Terpenos/metabolismo , Genómica/métodos , Myrtaceae/genética , Myrtaceae/metabolismo , Cromosomas de las Plantas/genética , Filogenia , Familia de Multigenes
2.
Plant Physiol Biochem ; 211: 108721, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38739961

RESUMEN

Pongamia (Millettia pinnata Syn. Pongamia pinnata), a mangrove associate plant, exhibits good stress tolerance, making it a treasure of genetic resources for crop improvement. NAC proteins are plant-specific transcription factors, which have been elucidated to participate in the regulation and tolerance of abiotic stresses (such as salt and drought). Here, we identified a salt-induced gene from Pongamia, MpNAC1, which encodes an NAC factor sharing five highly conserved domains with other NACs and exhibits close homology to AtNAC19/AtNAC55/AtNAC72 in Arabidopsis. MpNAC1 showed nuclear localization and transcriptional activator activity. MpNAC1-overexpressing Arabidopsis exhibited significantly stronger salt and drought tolerance compared with wild-type plants. The expression levels of stress-responsive genes were activated in transgenic Arabidopsis. Furthermore, the heterologous expression of MpNAC1 also enhanced the salt and drought tolerance of transgenic rice. The major agronomic traits, such as plant height and tiller number, panicle length, grain size, and yield, were similar between the transgenic lines and wild type under normal field growth conditions. RNA-Seq analysis revealed that MpNAC1 significantly up-regulated stress-responsive genes and activated the biosynthesis of secondary metabolites such as flavonoids, resulting in increased stress tolerance. Taken together, the MpNAC1 increased salt and drought stress tolerance in transgenic plants and did not retard the plant growth and development under normal growth conditions, suggesting the potential of MpNAC1 in breeding stress-resilient crops.


Asunto(s)
Arabidopsis , Sequías , Regulación de la Expresión Génica de las Plantas , Oryza , Proteínas de Plantas , Plantas Modificadas Genéticamente , Tolerancia a la Sal , Factores de Transcripción , Arabidopsis/genética , Oryza/genética , Oryza/fisiología , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Tolerancia a la Sal/genética , Millettia/genética , Millettia/metabolismo , Estrés Fisiológico/genética
3.
Plant Mol Biol ; 114(3): 57, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743266

RESUMEN

A high concentration of sodium (Na+) is the primary stressor for plants in high salinity environments. The Salt Overly Sensitive (SOS) pathway is one of the best-studied signal transduction pathways, which confers plants the ability to export too much Na+ out of the cells or translocate the cytoplasmic Na+ into the vacuole. In this study, the Salt Overly Sensitive3 (MpSOS3) gene from Pongamia (Millettia pinnata Syn. Pongamia pinnata), a semi-mangrove, was isolated and characterized. The MpSOS3 protein has canonical EF-hand motifs conserved in other calcium-binding proteins and an N-myristoylation signature sequence. The MpSOS3 gene was significantly induced by salt stress, especially in Pongamia roots. Expression of the wild-type MpSOS3 but not the mutated nonmyristoylated MpSOS3-G2A could rescue the salt-hypersensitive phenotype of the Arabidopsis sos3-1 mutant, which suggested the N-myristoylation signature sequence of MpSOS3 was required for MpSOS3 function in plant salt tolerance. Heterologous expression of MpSOS3 in Arabidopsis accumulated less H2O2, superoxide anion radical (O2-), and malondialdehyde (MDA) than wild-type plants, which enhanced the salt tolerance of transgenic Arabidopsis plants. Under salt stress, MpSOS3 transgenic plants accumulated a lower content of Na+ and a higher content of K+ than wild-type plants, which maintained a better K+/Na+ ratio in transgenic plants. Moreover, no development and growth discrepancies were observed in the MpSOS3 heterologous overexpression plants compared to wild-type plants. Our results demonstrated that the MpSOS3 pathway confers a conservative salt-tolerant role and provided a foundation for further study of the SOS pathway in Pongamia.


Asunto(s)
Arabidopsis , Clonación Molecular , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Plantas Modificadas Genéticamente , Tolerancia a la Sal , Plantas Tolerantes a la Sal , Plantas Tolerantes a la Sal/genética , Plantas Tolerantes a la Sal/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Tolerancia a la Sal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cloruro de Sodio/farmacología , Secuencia de Aminoácidos , Filogenia , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Estrés Salino/genética , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo
4.
RSC Adv ; 14(16): 11482-11512, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38595725

RESUMEN

Over the past decade, transition metal (TM)-based electrodes have shown intriguing physicochemical properties and widespread applications, especially in the field of supercapacitor energy storage owing to their diverse configurations, composition, porosity, and redox reactions. As one of the most intriguing research interests, the design of porous architectures in TM-based electrode materials has been demonstrated to facilitate ion/electron transport, modulate their electronic structure, diminish strain relaxation, and realize synergistic effects of multi-metals. Herein, the recent advances in porous TM-based electrodes are summarized, focusing on their typical synthesis strategies, including template-mediated assembly, thermal decomposition strategy, chemical deposition strategy, and host-guest hybridization strategy. Simultaneously, the corresponding conversion mechanism of each synthesis strategy are reviewed, and the merits and demerits of each strategy in building porous architectures are also discussed. Subsequently, TM-based electrode materials are categorized into TM oxides, TM hydroxides, TM sulfides, TM phosphides, TM carbides, and other TM species with a detailed review of their crystalline phase, electronic structure, and microstructure evolution to tune their electrochemical energy storage capacity. Finally, the challenges and prospects of porous TM-based electrode materials are presented to guide the future development in this field.

5.
J Ethnopharmacol ; 330: 118199, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38631486

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Nocardiosis is an uncommon infectious disease that bears certain similarities to tuberculosis, with a continuous increase in its incidence and a poor prognosis. In traditional Chinese medicine, the leaves of Cajanus cajan (L.) Millsp. are employed to treat wounds, malaria, coughs, and abdominal pain. AIM OF THE STUDY: In this study, we investigated the effects and mechanisms of longistylin A (LGA), a natural stilbene isolated from C. cajan, as a potential antibiotic against nocardiosis. MATERIALS AND METHODS: LGA was isolated from the leaves of C. cajan and assessed using a minimum bactericidal concentration (MBC) determination against Nocardia seriolae. Multi-omics analysis encompassing genes, proteins, and metabolites was conducted to investigate the impact of LGA treatment on N. seriolae. Additionally, quantitative analysis of 40 cytokinins in N. seriolae mycelium was performed to assess the specific effects of LGA treatment on cytokinin levels. Cryo-scanning electron microscopy was utilized to examine morphological changes induced by LGA treatment, particularly in the presence of exogenous trans-zeatin-O-glucoside (tZOG). The therapeutic effect of LGA was investigated by feeding N. seriolae-infected largemouth bass. RESULTS: LGA exhibited significant efficacy against N. seriolae, with MBC value of 2.56 µg/mL. Multi-omics analysis revealed that LGA disrupted glycerophospholipid metabolism and hormone biosynthesis by notably reducing the expression of glycerol-3-phosphate dehydrogenase and calmodulin-like protein. Treatment with LGA markedly disrupted 12 distinct cytokinins in N. seriolae mycelium. Additionally, the addition of exogenous tZOG counteracted the inhibitory effects of LGA on filamentous growth, resulting in mycelial elongation and branching. Furthermore, LGA treatment improved the survival rate of largemouth bass infected with N. seriolae. CONCLUSIONS: We found for the first time that LGA from C. cajan exhibited significant efficacy against N. seriolae by interfering with glycerophospholipid metabolism and cytokinin biosynthesis.


Asunto(s)
Antibacterianos , Cajanus , Citocininas , Glicerofosfolípidos , Nocardia , Nocardia/metabolismo , Nocardia/efectos de los fármacos , Citocininas/farmacología , Citocininas/biosíntesis , Citocininas/metabolismo , Glicerofosfolípidos/metabolismo , Glicerofosfolípidos/biosíntesis , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Hojas de la Planta
6.
Carbohydr Polym ; 329: 121768, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38286543

RESUMEN

In the current study, the effects of extrusion using a haake rheometer with a twin-roll mixer, with and without FA addition, on the structures and in vitro digestibility of starches from different sources were investigated. After extruding for 15 min at 90 °C with a moisture content of 40 %, no matter FA was added or not, lager Ap molecules were preferentially debranched, while Am with longer CL were depolymerized simultaneously, resulting to reduced averaged molecular size of Ap and shortened Am chains. Of all starches, regardless of their botanical backgrounds, although synergic effects were found between extrusion and FA addition on reducing their relative crystallinity and the ordered structures, distinctly different effects on the in vitro digestibility of these starches have also been observed especially regarding the digestion of starch branches with DP > 10 Particularly, the Am chains with DP 10-1000 was remaining undigested when FA was added. This study provides important information concerning how to adjust starch digestibility into a healthy range through altering the starch structures using extrusion technique with the addition of phytochemicals or not.


Asunto(s)
Ácidos Cumáricos , Almidón , Almidón/química , Digestión
7.
J Plant Physiol ; 288: 154060, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37542942

RESUMEN

Abiotic stress, such as salt and drought stress, seriously limits plant growth and crop yield. Abscisic acid (ABA) is essential in regulating plant responses to abiotic stress via signal perception, transduction, and transcriptional regulation. Pongamia (Millettia pinnata) is a kind of semi-mangrove plant with strong stress tolerance and can grow in fresh and sea water. However, the molecular mechanism of the ABA signaling pathway mediating the environmental tolerance of Pongamia is still scarce so far. AITR (ABA-Induced Transcription Repressor) was a recently identified small conserved family of transcription factor in angiosperms, which played controversial roles in response to abiotic stresses in different species. Here, we identified an ABA-induced gene, MpAITR1, which encoded a nucleus localization transcriptional factor in Pongamia. MpAITR1 was highly induced by ABA and salt treatments in roots and leaves. Heterologous expression of MpAITR1 in Arabidopsis increased sensitivity to ABA, moreover, enhanced tolerance to salt and drought stress. The expression levels of some ABA-responsive and stress-responsive genes were altered in transgenic plants compared to wild-type plants under the ABA, salt, and drought stress, which was consistent with the stress-tolerant phenotype of transgenic plants. These results reveal that MpAITR1 positively modulates ABA signaling pathways and enhances the tolerance to salt and drought stress by regulating downstream target genes. Taken together, MpAITR1 from the semi-mangrove plant Pongamia serves as a potential candidate for stress-tolerant crop breeding.


Asunto(s)
Arabidopsis , Millettia , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Millettia/genética , Millettia/metabolismo , Resistencia a la Sequía , Cloruro de Sodio/farmacología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Estrés Fisiológico/fisiología , Sequías , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
DNA Res ; 30(4)2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37228100

RESUMEN

Plantago is a major genus belonging to the Plantaginaceae family and is used in herbal medicine, functional food, and pastures. Several Plantago species are also characterized by their global distribution, but the mechanism underpinning this is not known. Here, we present a high-quality, chromosome-level genome assembly of Plantago major L., a species of Plantago, by incorporating Oxford Nanopore sequencing and Hi-C technologies. The genome assembly size was approximately 671.27 Mb with a contig N50 length of 31.30 Mb. 31,654 protein-coding genes were identified from the genome. Evolutionary analysis showed that P. major diverged from other Lamiales species at ~62.18 Mya and experienced two rounds of WGD events. Notably, many gene families related to plant acclimation and adaptation expanded. We also found that many polyphenol biosynthesis genes showed high expression patterns in roots. Some amino acid biosynthesis genes, such as those involved in histidine synthesis, were highly induced under metal (Ni) stress that led to the accumulation of corresponding metabolites. These results suggest persuasive arguments for the global distribution of P. major through multiscale analysis. Decoding the P. major genome provides a valuable genomic resource for research on dissecting biological function, molecular evolution, taxonomy, and breeding.


Asunto(s)
Plantaginaceae , Plantago , Plantago/genética , Plantaginaceae/genética , Fitomejoramiento , Cromosomas , Aclimatación , Suelo , Filogenia
9.
BMC Biol ; 21(1): 122, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37226197

RESUMEN

BACKGROUND: The factors that maintain phenotypic and genetic variation within a population have received long-term attention in evolutionary biology. Here the genetic basis and evolution of the geographically widespread variation in twig trichome color (from red to white) in a shrub Melastoma normale was investigated using Pool-seq and evolutionary analyses. RESULTS: The results show that the twig trichome coloration is under selection in different light environments and that a 6-kb region containing an R2R3 MYB transcription factor gene is the major region of divergence between the extreme red and white morphs. This gene has two highly divergent groups of alleles, one of which likely originated from introgression from another species in this genus and has risen to high frequency (> 0.6) within each of the three populations under investigation. In contrast, polymorphisms in other regions of the genome show no sign of differentiation between the two morphs, suggesting that genomic patterns of diversity have been shaped by homogenizing gene flow. Population genetics analysis reveals signals of balancing selection acting on this gene, and it is suggested that spatially varying selection is the most likely mechanism of balancing selection in this case. CONCLUSIONS: This study demonstrate that polymorphisms on a single transcription factor gene largely confer the twig trichome color variation in M. normale, while also explaining how adaptive divergence can occur and be maintained in the face of gene flow.


Asunto(s)
Factores de Transcripción , Tricomas , Factores de Transcripción/genética , Tricomas/genética , Regulación de la Expresión Génica , Alelos , Genómica
10.
Plant Sci ; 330: 111645, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36828141

RESUMEN

Sumoylation is a crucial post-translation modification (PTM) that is the covalent attachment of SUMO molecules to the substrate catalyzed by enzyme cascade. Sumoylation is essential in almost every physiological process of plants, particularly in response to abiotic stress. However, little is known about sumoylation in sweet potato (Ipomoea batatas), the world's seventh most important food crop. In this study, 17 sweet potato SUMO system genes have been cloned and functionally characterized. Multiple sequence alignment and phylogenetic analysis showed sweet potato SUMO system proteins had conserved domains and activity sites. IbSUMOs, IbSAE1, and IbSCE1 were localized in the cytoplasm and nucleus. E3 SUMO ligases showed nuclear or punctate localization. In vitro sumoylation assay confirmed the catalytic activity of sweet potato SUMO system components. Heterologous expression of IbSIZ1 genes in Arabidopsis atsiz1 mutant rescued the defective germination and growth phenotype. IbSCE1a/b and IbSIZ1a/b/c were salt and drought responsive genes. Heterologous expression of IbSCE1a/b/c improved the drought tolerance of Arabidopsis thaliana, while IbSIZ1a/b/c significantly enhanced the salt and drought tolerance. Our findings define that the SUMO system in sweet potato shared with conserved function but also possessed specific characterization. The resources presented here would facilitate uncovering the significance of sumoylation in sweet potato.


Asunto(s)
Arabidopsis , Ipomoea batatas , Ipomoea batatas/metabolismo , Sequías , Filogenia , Plantas Modificadas Genéticamente/genética , Estrés Fisiológico/genética , Cloruro de Sodio/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas
11.
Sci Data ; 9(1): 519, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-36008422

RESUMEN

Lakes provide water-related ecosystem services that support human life and production. Nevertheless, climate changes and anthropogenic interventions remarkably altered lake and basin hydrology in recent decades, which pose a significant threat to lacustrine ecosystems. Therefore, assessments of lacustrine ecosystems require the spatial and temporal characteristics of key physical and human-dimensional attributes for lakes and lake basins. To facilitate stakeholders obtaining comprehensive data of lake basins in China, we compiled the comprehensive data set for China's lake basins (CODCLAB) mostly from publicly available data sources based on spatial analysis and mathematical statistics methods in this study. The CODCLAB is available in three data formats, including raster layers (Level 1) in "tiff" format, vector shapefiles (Level 2), and attribute tables (Level 3). It covers 767 lakes (>10 km2) in China and their basin extent associating with 34 variables organized into five categories: Hydrology, Topography, Climate, Anthropogenic, and Soils. This unique database will provide basic data for research on the physical processes and socioeconomic activities related to these lakes and their basins in China and expect to feed a broad user community for their application in different areas.

12.
Artículo en Inglés | MEDLINE | ID: mdl-36011954

RESUMEN

Under circumstances of pervasive global aging combined with weakened traditional family elder care, an incremental demand for institutional elder care is generated. This has led to a surge in research regarding institutional elder care. Rural residents' institutional elder care is receiving more attention as a major theme in social sciences and humanities research. Based on 94 articles related to rural institutional elder care, this study identified the most influential articles, journals and countries in rural institutional elder care research since 1995. This was done using science mapping methods through a three-step workflow consisting of bibliometric retrieval, scoping analysis and qualitative discussion. Keywords revealed five research mainstreams in this field: (1) the cognition and mental state of aged populations, (2) the nursing quality and service supply of aged care institutions, (3) the aged care management systems' establishment and improvements, (4) the risk factors of admission and discharge of aged care institutions, and (5) deathbed matters regarding the aged population. A qualitative discussion is also provided for 39 urban and rural comparative research papers and 55 pure rural research papers, summarizing the current research progress status regarding institutional elder care systems in rural areas. Gaps within existing research are also identified to indicate future research trends (such as the multi-dimensional and in-depth comparative research on institutional elder care, new rural institutional elder care model and technology, and correlative policy planning and development), which provides a multi-disciplinary guide for future research.


Asunto(s)
Población Rural , Tecnología , Anciano , Bibliometría , Humanos , Factores de Riesgo
13.
Microbiol Spectr ; 10(5): e0094522, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36000904

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) is a major bacterial pathogen that causes hospital- and community-acquired infections. Owing to its multidrug resistance, it is imperative to develop new antimicrobial agents to treat MRSA infections. In this study, using genome mining analysis and a culture-based screening method to detect bacteriocin activity, we screened a strain, Bacillus sp. TL12, which harbored a putative leaderless bacteriocin gene cluster (bac gene cluster) and exhibited potent anti-MRSA activity. The antimicrobial agents, products of the bac gene cluster, were purified and identified as four novel leaderless bacteriocins: bacin A1, A2, A3, and A4. Bacin A2 was evaluated as a representative antimicrobial agent and showed remarkable antimicrobial activity against S. aureus, MRSA, and the foodborne pathogens Listeria monocytogenes and Bacillus cereus. Mechanistic experiments revealed that bacin A2 damaged cell membranes and exhibited bactericidal activity against MRSA. Bacin A2 effectively inhibited the formation of S. aureus and MRSA biofilms (>0.5× MIC) and killed the cells in their established biofilms (>4× MIC). The hemolytic and NIH/3T3 cytotoxicity assay results for bacin A2 confirmed its biosafety. Thus, bacins have potential as alternative antimicrobial agents for treating MRSA infections. IMPORTANCE Methicillin-resistant Staphylococcus aureus (MRSA) is a major human pathogen that is difficult to treat because of its resistance to several widely used antibiotics. The present study aimed to identify novel anti-MRSA bacteriocins in a prominent producer of bacteriocins, Bacillus cereus group. Four novel leaderless bacteriocins, bacin A1, A2, A3, and A4, which show potent bactericidal effect against S. aureus and MRSA, were identified in Bacillus sp. TL12. Moreover, bacins inhibited biofilm formation and killed cells in the established biofilms of S. aureus and MRSA. These findings suggest that bacins are promising alternatives to treat MRSA infections.


Asunto(s)
Bacteriocinas , Staphylococcus aureus Resistente a Meticilina , Antibacterianos/farmacología , Bacteriocinas/farmacología , Biopelículas , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus
14.
J Agric Food Chem ; 70(32): 9990-9999, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35924350

RESUMEN

Bacteriocins are bacterial-derived peptides that exhibit antimicrobial activity and can be used as food preservatives. Here, using the indicator strain Bacillus cereus CMCC63301, we screened and identified a Bacillus thuringiensis LX43 strain that exhibits potent antimicrobial activity and harbors a putative leaderless bacteriocin gene cluster (thn gene cluster). Five novel leaderless bacteriocins, thuricin A1, A2, A3, A4, and A5, encoded by the thn gene cluster, were purified and identified. Thuricin A5 was regarded as a representative and showed remarkable antimicrobial activity against foodborne pathogens B. cereus, Clostridium perfringens, Listeria monocytogenes, and Staphylococcus aureus, likely by damaging their cell envelope. Moreover, thuricin A5 displayed good thermal and pH stability, with no hemolytic activity and cytotoxicity, indicating its wide applicability and biosafety. Furthermore, thuricin A5 effectively inhibited or eradicated foodborne pathogens in skim milk at 25 °C in a dose-dependent manner, affirming its potential for use as a novel biopreservative in foods.


Asunto(s)
Antiinfecciosos , Bacillus thuringiensis , Bacteriocinas , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Bacillus cereus/genética , Bacteriocinas/genética , Bacteriocinas/farmacología
15.
Nat Prod Res ; 36(19): 4853-4861, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33771054

RESUMEN

Foeniculins A-C (1-3) together with a pair of enantiomers (±)-foeniculin D (4) were isolated from endophytic fungus Diaporthe foeniculina BZM-15. Their structures including absolute configurations were unambiguously established by extensive interpretation of the NMR and HR-ESI-MS data, ECD measurements powered by molecular calculations, as well as Mo2(OAc)4 mediated CD methodology. The cytotoxic activity assay disclosed that these compounds didn't show any noticeable cytotoxic activity.[Formula: see text].


Asunto(s)
Ascomicetos , Pironas , Ascomicetos/química , Línea Celular Tumoral , Estructura Molecular , Pironas/química
16.
iScience ; 24(10): 103148, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34646986

RESUMEN

Tropical plants have adapted to strong solar ultraviolet (UV) radiation. Here we compare molecular responses of two tropical mangroves Avecennia marina and Rhizophora apiculata to high-dose UV-B. Whole-genome bisulfate sequencing indicates that high UV-B induced comparable hyper- or hypo-methylation in three sequence contexts (CG, CHG, and CHH, where H refers to A, T, or C) in A. marina but mainly CHG hypomethylation in R. apiculata. RNA and small RNA sequencing reveals UV-B induced relaxation of transposable element (TE) silencing together with up-regulation of TE-adjacent genes in R. apiculata but not in A. marina. Despite conserved upregulation of flavonoid biosynthesis and downregulation of photosynthesis genes caused by high UV-B, A. marina specifically upregulated ABC transporter and ubiquinone biosynthesis genes that are known to be protective against UV-B-induced damage. Our results point to divergent responses underlying plant UV-B adaptation at both the epigenetic and transcriptional level.

17.
Int J Mol Sci ; 22(19)2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34639173

RESUMEN

C2H2 zinc finger proteins (ZFPs) play important roles in plant development and response to abiotic stresses, and have been studied extensively. However, there are few studies on ZFPs in mangroves and mangrove associates, which represent a unique plant community with robust stress tolerance. MpZFP1, which is highly induced by salt stress in the mangrove associate Millettia pinnata, was cloned and functionally characterized in this study. MpZFP1 protein contains two zinc finger domains with conserved QALGGH motifs and targets to the nucleus. The heterologous expression of MpZFP1 in Arabidopsis increased the seeds' germination rate, seedling survival rate, and biomass accumulation under salt stress. The transgenic plants also increased the expression of stress-responsive genes, including RD22 and RD29A, and reduced the accumulation of reactive oxygen species (ROS). These results indicate that MpZFP1 is a positive regulator of plant responses to salt stress due to its activation of gene expression and efficient scavenging of ROS.


Asunto(s)
Arabidopsis/fisiología , Dedos de Zinc CYS2-HIS2 , Regulación de la Expresión Génica de las Plantas , Millettia/fisiología , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/fisiología , Tolerancia a la Sal , Arabidopsis/genética , Arabidopsis/metabolismo , Sequías , Millettia/genética , Millettia/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Estrés Fisiológico
18.
Cells ; 10(9)2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34571927

RESUMEN

Histone deacetylases (HDACs) are vital epigenetic modifiers not only in regulating plant development but also in abiotic- and biotic-stress responses. Though to date, the functions of HD2C-an HD2-type HDAC-In plant development and abiotic stress have been intensively explored, its function in biotic stress remains unknown. In this study, we have identified HD2C as an interaction partner of the Cauliflower mosaic virus (CaMV) P6 protein. It functions as a positive regulator in defending against CaMV infection. The hd2c mutants show enhanced susceptibility to CaMV infection. In support, the accumulation of viral DNA, viral transcripts, and the deposition of histone acetylation on the viral minichromosomes are increased in hd2c mutants. P6 interferes with the interaction between HD2C and HDA6, and P6 overexpression lines have similar phenotypes with hd2c mutants. In further investigations, P6 overexpression lines, together with CaMV infection plants, are more sensitive to ABA and NaCl with a concomitant increasing expression of ABA/NaCl-regulated genes. Moreover, the global levels of histone acetylation are increased in P6 overexpression lines and CaMV infection plants. Collectively, our results suggest that P6 dysfunctions histone deacetylase HD2C by physical interaction to promote CaMV infection.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/virología , Caulimovirus/aislamiento & purificación , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas , Histona Desacetilasas/metabolismo , Hojas de la Planta/virología , Proteínas Virales/metabolismo , Virosis/virología , Acetilación , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Caulimovirus/fisiología , Proteínas de Unión al ADN/genética , Histona Desacetilasas/química , Histona Desacetilasas/genética , Fenotipo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/virología , Nicotiana/genética , Nicotiana/crecimiento & desarrollo , Nicotiana/metabolismo , Nicotiana/virología , Proteínas Virales/genética , Virosis/genética , Virosis/metabolismo
19.
Int J Mol Sci ; 22(7)2021 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-33801703

RESUMEN

Salt stress is a major increasing threat to global agriculture. Pongamia (Millettia pinnata), a semi-mangrove, is a good model to study the molecular mechanism of plant adaptation to the saline environment. Calcium signaling pathways play critical roles in the model plants such as Arabidopsis in responding to salt stress, but little is known about their function in Pongamia. Here, we have isolated and characterized a salt-responsive MpCML40, a calmodulin-like (CML) gene from Pongamia. MpCML40 protein has 140 amino acids and is homologous with Arabidopsis AtCML40. MpCML40 contains four EF-hand motifs and a bipartite NLS (Nuclear Localization Signal) and localizes both at the plasma membrane and in the nucleus. MpCML40 was highly induced after salt treatment, especially in Pongamia roots. Heterologous expression of MpCML40 in yeast cells improved their salt tolerance. The 35S::MpCML40 transgenic Arabidopsis highly enhanced seed germination rate and root length under salt and osmotic stresses. The transgenic plants had a higher level of proline and a lower level of MDA (malondialdehyde) under normal and stress conditions, which suggested that heterologous expression of MpCML40 contributed to proline accumulation to improve salt tolerance and protect plants from the ROS (reactive oxygen species) destructive effects. Furthermore, we did not observe any measurable discrepancies in the development and growth between the transgenic plants and wild-type plants under normal growth conditions. Our results suggest that MpCML40 is an important positive regulator in response to salt stress and of potential application in producing salt-tolerant crops.


Asunto(s)
Señalización del Calcio , Calmodulina/metabolismo , Millettia/metabolismo , Señales de Localización Nuclear , Proteínas de Plantas/metabolismo , Secuencias de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Calmodulina/genética , Regulación de la Expresión Génica de las Plantas , Malondialdehído/química , Millettia/genética , Sistemas de Lectura Abierta , Ósmosis , Fenotipo , Filogenia , Proteínas de Plantas/genética , Raíces de Plantas , Plantas Modificadas Genéticamente , Prolina/química , Estrés Salino , Tolerancia a la Sal/genética , Plantas Tolerantes a la Sal/metabolismo , Semillas/metabolismo
20.
Appl Environ Microbiol ; 87(12): e0018521, 2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-33811023

RESUMEN

Bacteriocins have attracted increasing interest because of their potential as natural preservatives. Recent studies showed that the Bacillus cereus group is a prominent producer of bacteriocins. Using a laboratory-based screening strategy, we identified a strain in the B. cereus group, Bacillus toyonensis XIN-YC13, with antimicrobial activity against B. cereus. A novel, 70-amino-acid-long leaderless bacteriocin, toyoncin, was purified from the culture supernatant of strain XIN-YC13, and its molecular mass was found to be 7,817.1012 Da. Toyoncin shares no similarity with any other known bacteriocins, and its N-terminal amino acid is formylmethionine rather than methionine. Toyoncin shows good pH and heat stability and exhibits specific antimicrobial activity against two important foodborne pathogens, B. cereus and Listeria monocytogenes. Additionally, toyoncin exerts bactericidal activity and induces cell membrane damage. Toyoncin can also inhibit the outgrowth of B. cereus spores. Preservation assays showed that toyoncin effectively suppressed or eradicated B. cereus and L. monocytogenes in pasteurized skim milk. These results suggest that toyoncin can be used as a new biopreservative against B. cereus and L. monocytogenes in the food industry. IMPORTANCE We identified a novel leaderless bacteriocin, toyoncin, produced by B. toyonensis XIN-YC13. Toyoncin shows good pH and heat stability, and it has specific antimicrobial activity against B. cereus and L. monocytogenes (two important foodborne pathogens), likely by destroying their cell membrane integrity. Toyoncin inhibited the outgrowth of B. cereus spores and effectively inhibited or eliminated B. cereus and L. monocytogenes in a milk model system. These results indicate the potential of toyoncin as a food preservative.


Asunto(s)
Bacillus cereus/efectos de los fármacos , Bacillus/metabolismo , Bacteriocinas/farmacología , Agentes de Control Biológico , Conservantes de Alimentos/farmacología , Listeria monocytogenes/efectos de los fármacos , Secuencia de Aminoácidos , Animales , Bacillus cereus/crecimiento & desarrollo , Bacteriocinas/química , Bacteriocinas/genética , Bacteriocinas/aislamiento & purificación , Microbiología de Alimentos , Conservantes de Alimentos/química , Conservantes de Alimentos/aislamiento & purificación , Concentración de Iones de Hidrógeno , Listeria monocytogenes/crecimiento & desarrollo , Leche/microbiología , Familia de Multigenes , Esporas Bacterianas/efectos de los fármacos , Esporas Bacterianas/crecimiento & desarrollo , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...