Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Alzheimers Dement ; 2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39129223

RESUMEN

INTRODUCTION: The heritability of Alzheimer's disease (AD) is estimated to be 58%-79%. However, known genes can only partially explain the heritability. METHODS: Here, we conducted gene-based exome-wide association study (ExWAS) of rare variants and single-variant ExWAS of common variants, utilizing data of 54,569 clinically diagnosed/proxy AD and related dementia (ADRD) and 295,421 controls from the UK Biobank. RESULTS: Gene-based ExWAS identified 11 genes predicting a higher ADRD risk, including five novel ones, namely FRMD8, DDX1, DNMT3L, MORC1, and TGM2, along with six previously reported ones, SORL1, GRN, PSEN1, ABCA7, GBA, and ADAM10. Single-variant ExWAS identified two ADRD-associated novel genes, SLCO1C1 and NDNF. The identified genes were predominantly enriched in amyloid-ß process pathways, microglia, and brain regions like hippocampus. The druggability evidence suggests that DDX1, DNMT3L, TGM2, SLCO1C1, and NDNF could be effective drug targets. DISCUSSION: Our study contributes to the current body of evidence on the genetic etiology of ADRD. HIGHLIGHTS: Gene-based analyses of rare variants identified five novel genes for Alzheimer's disease and related dementia (ADRD), including FRMD8, DDX1, DNMT3L, MORC1, and TGM2. Single-variant analyses of common variants identified two novel genes for ADRD, including SLCO1C1 and NDNF. The identified genes were predominantly enriched in amyloid-ß process pathways, microglia, and brain regions like hippocampus. DDX1, DNMT3L, TGM2, SLCO1C1, and NDNF could be effective drug targets.

2.
Mol Psychiatry ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39215183

RESUMEN

Educational attainment (EA), socioeconomic status (SES) and cognition are phenotypically and genetically linked to health outcomes. However, the role of copy number variations (CNVs) in influencing EA/SES/cognition remains unclear. Using a large-scale (n = 305,401) genome-wide CNV-level association analysis, we discovered 33 CNV loci significantly associated with EA/SES/cognition, 20 of which were novel (deletions at 2p22.2, 2p16.2, 2p12, 3p25.3, 4p15.2, 5p15.33, 5q21.1, 8p21.3, 9p21.1, 11p14.3, 13q12.13, 17q21.31, and 20q13.33, as well as duplications at 3q12.2, 3q23, 7p22.3, 8p23.1, 8p23.2, 17q12 (105 kb), and 19q13.32). The genes identified in gene-level tests were enriched in biological pathways such as neurodegeneration, telomere maintenance and axon guidance. Phenome-wide association studies further identified novel associations of EA/SES/cognition-associated CNVs with mental and physical diseases, such as 6q27 duplication with upper respiratory disease and 17q12 (105 kb) duplication with mood disorders. Our findings provide a genome-wide CNV profile for EA/SES/cognition and bridge their connections to health. The expanded candidate CNVs database and the residing genes would be a valuable resource for future studies aimed at uncovering the biological mechanisms underlying cognitive function and related clinical phenotypes.

3.
Nat Hum Behav ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987357

RESUMEN

Recent expansion of proteomic coverage opens unparalleled avenues to unveil new biomarkers of Alzheimer's disease (AD). Among 6,361 cerebrospinal fluid (CSF) proteins analysed from the ADNI database, YWHAG performed best in diagnosing both biologically (AUC = 0.969) and clinically (AUC = 0.857) defined AD. Four- (YWHAG, SMOC1, PIGR and TMOD2) and five- (ACHE, YWHAG, PCSK1, MMP10 and IRF1) protein panels greatly improved the accuracy to 0.987 and 0.975, respectively. Their superior performance was validated in an independent external cohort and in discriminating autopsy-confirmed AD versus non-AD, rivalling even canonical CSF ATN biomarkers. Moreover, they effectively predicted the clinical progression to AD dementia and were strongly associated with AD core biomarkers and cognitive decline. Synaptic, neurogenic and infectious pathways were enriched in distinct AD stages. Mendelian randomization did not support the significant genetic link between CSF proteins and AD. Our findings revealed promising high-performance biomarkers for AD diagnosis and prediction, with implications for clinical trials targeting different pathomechanisms.

4.
Nat Commun ; 15(1): 5777, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38982111

RESUMEN

Alcohol consumption is a heritable behavior seriously endangers human health. However, genetic studies on alcohol consumption primarily focuses on common variants, while insights from rare coding variants are lacking. Here we leverage whole exome sequencing data across 304,119 white British individuals from UK Biobank to identify protein-coding variants associated with alcohol consumption. Twenty-five variants are associated with alcohol consumption through single variant analysis and thirteen genes through gene-based analysis, ten of which have not been reported previously. Notably, the two unreported alcohol consumption-related genes GIGYF1 and ANKRD12 show enrichment in brain function-related pathways including glial cell differentiation and are strongly expressed in the cerebellum. Phenome-wide association analyses reveal that alcohol consumption-related genes are associated with brain white matter integrity and risk of digestive and neuropsychiatric diseases. In summary, this study enhances the comprehension of the genetic architecture of alcohol consumption and implies biological mechanisms underlying alcohol-related adverse outcomes.


Asunto(s)
Consumo de Bebidas Alcohólicas , Secuenciación del Exoma , Humanos , Consumo de Bebidas Alcohólicas/genética , Masculino , Femenino , Predisposición Genética a la Enfermedad , Reino Unido/epidemiología , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Exoma/genética , Persona de Mediana Edad , Encéfalo/metabolismo , Encéfalo/patología
5.
Nat Commun ; 15(1): 5924, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009607

RESUMEN

The genetic contribution of protein-coding variants to immune-mediated diseases (IMDs) remains underexplored. Through whole exome sequencing of 40 IMDs in 350,770 UK Biobank participants, we identified 162 unique genes in 35 IMDs, among which 124 were novel genes. Several genes, including FLG which is associated with atopic dermatitis and asthma, showed converging evidence from both rare and common variants. 91 genes exerted significant effects on longitudinal outcomes (interquartile range of Hazard Ratio: 1.12-5.89). Mendelian randomization identified five causal genes, of which four were approved drug targets (CDSN, DDR1, LTA, and IL18BP). Proteomic analysis indicated that mutations associated with specific IMDs might also affect protein expression in other IMDs. For example, DXO (celiac disease-related gene) and PSMB9 (alopecia areata-related gene) could modulate CDSN (autoimmune hypothyroidism-, psoriasis-, asthma-, and Graves' disease-related gene) expression. Identified genes predominantly impact immune and biochemical processes, and can be clustered into pathways of immune-related, urate metabolism, and antigen processing. Our findings identified protein-coding variants which are the key to IMDs pathogenesis and provided new insights into tailored innovative therapies.


Asunto(s)
Secuenciación del Exoma , Proteínas Filagrina , Humanos , Masculino , Femenino , Adulto , Predisposición Genética a la Enfermedad/genética , Persona de Mediana Edad , Enfermedades del Sistema Inmune/genética , Análisis de la Aleatorización Mendeliana , Mutación , Proteómica , Variación Genética , Asma/genética , Asma/inmunología , Anciano , Dermatitis Atópica/genética , Dermatitis Atópica/inmunología
6.
J Affect Disord ; 362: 323-333, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38971194

RESUMEN

BACKGROUND: Shift work is associated with susceptibility to several neuropsychiatric disorders. This study aims to investigate the effect of shift work on the incidence of neuropsychiatric disorders, and highlighting how individual variability may influence the association. METHODS: UK Biobank participants with employment information were included. Cox survival was conducted in main and subgroup analyses. Correlation analyses explored the impact of shift work on brain structures, and mediation analyses were performed to elucidate the shared underlying mechanisms. Shift work tolerance was evaluated through survival analyses contrasting the risks associated with five neuropsychiatric disorders in shift versus non-shift workers across different demographic or occupational strata. RESULTS: The analysis encompassed 254,646 participants. Shift work was associated with higher risk of dementia (HR 1.29, 95 % CI 1.10-1.52), anxiety (1.08, 1.01-1.15), depression (1.29, 1.22-1.36), and sleep disorders (1.18, 1.09-1.28), but not stroke (p = 0.20). Shift work was correlated with decreasing volume of various brain regions, particularly in thalamus, lateral orbitofrontal, and middle temporal. Mediation analysis revealed that increased immune response and glucose levels are common pathways linking shift work to these disorders. We observed diversity in shift work tolerance across different individual characteristics, among which socioeconomic status and length of working hours were the most essential. LIMITATIONS: Self-reported employment information may cause misclassification and recall bias. And since we focused on the middle-aged population, the conclusions may not be representative of younger or older populations. CONCLUSIONS: Our findings indicated the need to monitor shift worker health and provide personalized management to help adapt to shift work.


Asunto(s)
Horario de Trabajo por Turnos , Humanos , Masculino , Femenino , Persona de Mediana Edad , Horario de Trabajo por Turnos/efectos adversos , Reino Unido/epidemiología , Adulto , Incidencia , Anciano , Demencia/epidemiología , Tolerancia al Trabajo Programado/fisiología , Ansiedad/epidemiología , Trastornos del Sueño-Vigilia/epidemiología , Encéfalo/fisiopatología , Trastornos Mentales/epidemiología , Depresión/epidemiología
7.
Geroscience ; 46(5): 5365-5385, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38837026

RESUMEN

Telomere length is a putative biomarker of aging and is associated with multiple age-related diseases. There are limited data on the landscape of rare genetic variations in telomere length. Here, we systematically characterize the rare variant associations with leukocyte telomere length (LTL) through exome-wide association study (ExWAS) among 390,231 individuals in the UK Biobank. We identified 18 robust rare-variant genes for LTL, most of which estimated effects on LTL were significant (> 0.2 standard deviation per allele). The biological functions of the rare-variant genes were associated with telomere maintenance and capping and several genes were specifically expressed in the testis. Three novel genes (ASXL1, CFAP58, and TET2) associated with LTL were identified. Phenotypic association analyses indicated significant associations of ASXL1 and TET2 with cancers, age-related diseases, blood assays, and cardiovascular traits. Survival analyses suggested that carriers of ASXL1 or TET2 variants were at increased risk for cancers; diseases of the circulatory, respiratory, and genitourinary systems; and all-cause and cause-specific deaths. The CFAP58 carriers were at elevated risk of deaths due to cancers. Collectively, the present whole exome sequencing study provides novel insights into the genetic landscape of LTL, identifying novel genes associated with LTL and their implications on human health and facilitating a better understanding of aging, thus pinpointing the genetic relevance of LTL with clonal hematopoiesis, biomedical traits, and health-related outcomes.


Asunto(s)
Secuenciación del Exoma , Proteínas Represoras , Humanos , Masculino , Proteínas Represoras/genética , Femenino , Dioxigenasas/genética , Proteínas Proto-Oncogénicas/genética , Proteínas de Unión al ADN/genética , Envejecimiento/genética , Persona de Mediana Edad , Anciano , Estudio de Asociación del Genoma Completo , Homeostasis del Telómero/genética , Leucocitos/metabolismo , Telómero/genética , Neoplasias/genética , Exoma/genética
8.
Nat Hum Behav ; 8(6): 1194-1208, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38589703

RESUMEN

While numerous genomic loci have been identified for neuropsychiatric conditions, the contribution of protein-coding variants has yet to be determined. Here we conducted a large-scale whole-exome-sequencing study to interrogate the impact of protein-coding variants on 46 neuropsychiatric diseases and 23 traits in 350,770 adults from the UK Biobank. Twenty new genes were associated with neuropsychiatric diseases through coding variants, among which 16 genes had impacts on the longitudinal risks of diseases. Thirty new genes were associated with neuropsychiatric traits, with SYNGAP1 showing pleiotropic effects across cognitive function domains. Pairwise estimation of genetic correlations at the coding-variant level highlighted shared genetic associations among pairs of neurodegenerative diseases and mental disorders. Lastly, a comprehensive multi-omics analysis suggested that alterations in brain structures, blood proteins and inflammation potentially contribute to the gene-phenotype linkages. Overall, our findings characterized a compendium of protein-coding variants for future research on the biology and therapeutics of neuropsychiatric phenotypes.


Asunto(s)
Secuenciación del Exoma , Trastornos Mentales , Humanos , Trastornos Mentales/genética , Masculino , Femenino , Adulto , Persona de Mediana Edad , Predisposición Genética a la Enfermedad , Reino Unido , Fenotipo , Enfermedades Neurodegenerativas/genética , Estudios de Asociación Genética , Anciano , Exoma/genética
9.
Nat Commun ; 15(1): 2819, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561338

RESUMEN

Previous genetic studies of venous thromboembolism (VTE) have been largely limited to common variants, leaving the genetic determinants relatively incomplete. We performed an exome-wide association study of VTE among 14,723 cases and 334,315 controls. Fourteen known and four novel genes (SRSF6, PHPT1, CGN, and MAP3K2) were identified through protein-coding variants, with broad replication in the FinnGen cohort. Most genes we discovered exhibited the potential to predict future VTE events in longitudinal analysis. Notably, we provide evidence for the additive contribution of rare coding variants to known genome-wide polygenic risk in shaping VTE risk. The identified genes were enriched in pathways affecting coagulation and platelet activation, along with liver-specific expression. The pleiotropic effects of these genes indicated the potential involvement of coagulation factors, blood cell traits, liver function, and immunometabolic processes in VTE pathogenesis. In conclusion, our study unveils the valuable contribution of protein-coding variants in VTE etiology and sheds new light on its risk stratification.


Asunto(s)
Tromboembolia Venosa , Humanos , Tromboembolia Venosa/genética , Factores de Riesgo , Factores de Coagulación Sanguínea/genética , Exoma , Estudio de Asociación del Genoma Completo , Factores de Empalme Serina-Arginina/genética , Fosfoproteínas/genética
10.
J Neurol ; 271(5): 2529-2538, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38265471

RESUMEN

BACKGROUND: Muscle weakness is a prominent feature of Parkinson's disease, but whether the occurrence of this deficit in healthy adults is associated with subsequent PD diagnosis remains unclear. OBJECTIVE: This study sought to examine the relationship between muscle strength, represented by grip strength and walking pace, and the risk of incident PD. METHODS: A total of 422,531 participants from the UK biobank were included in this study. Longitudinal associations of grip strength and walking pace with the risk of incident PD were investigated by Cox proportional hazard models adjusting for several well-established risk factors. Subgroup and sensitivity analyses were also conducted for further validation. RESULTS: After a median follow-up of 9.23 years, 2,118 (0.5%) individuals developed incident PD. For per 5 kg increment of absolute grip strength, there was a significant 10.2% reduction in the risk of incident PD (HR = 0.898, 95% CI [0.872-0.924], P < 0.001). Similarly, per 0.05 kg/kg increment of relative grip strength was related to a 9.2% reduced risk of incident PD (HR = 0.908, 95% CI [0.887-0.929], P < 0.001). Notably, the associations remained consistent when grip strength was calculated as quintiles. Moreover, participants with a slower walking pace demonstrated an elevated risk of incident PD (HR = 1.231, 95%CI [1.075-1.409], P = 0.003). Subgroup and sensitivity analyses further validated the robustness of the observed associations. CONCLUSION: Our findings showed a negative association of grip strength and walking pace with the risk of incident PD independent of important confounding factors. These results hold potential implications for the early screening of people at high-risk of PD.


Asunto(s)
Fuerza de la Mano , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/epidemiología , Masculino , Femenino , Fuerza de la Mano/fisiología , Persona de Mediana Edad , Anciano , Estudios Prospectivos , Incidencia , Velocidad al Caminar/fisiología , Reino Unido/epidemiología , Adulto , Factores de Riesgo , Estudios de Seguimiento , Estudios de Cohortes , Estudios Longitudinales , Caminata/fisiología
11.
Hum Brain Mapp ; 45(1): e26560, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38224536

RESUMEN

OBJECTIVES: White matter hyperintensities (WMH) increase the risk of stroke and cognitive impairment. This study aims to determine the cross-sectional and longitudinal associations between adiposity and WMH. METHODS: Participants were enrolled from the UK Biobank cohort. Associations of concurrent, past, and changes in overall and central adiposity with WMH were investigated by linear and nonlinear regression models. The association of longitudinal adiposity and WMH volume changes was determined by a linear mixed model. Mediation analysis investigated the potential mediating effect of blood pressure. RESULTS: In 34,653 participants with available adiposity measures and imaging data, the concurrent obese group had a 25.3% (ß [95% CI] = 0.253 [0.222-0.284]) higher WMH volume than the ideal weight group. Increment in all adiposity measures was associated with a higher WMH volume. Among them, waist circumference demonstrated the strongest effect (ß [95% CI] = 0.113 [0.101-0.125]). Past adiposity also demonstrated similar effects. Among the subset of 2664 participants with available WMH follow-up data, adiposity measures were predictive of WMH change. Regarding changes of adiposity, compared with ideal weight stable group, those who turned from ideal weight to overweight/obese had a 8.1% higher WMH volume (ß [95% CI] = 0.081 [0.039-0.123]), while participants who turned from overweight/obese to ideal weight demonstrated no significant WMH volume change. Blood pressure partly meditates the associations between adiposity and WMH. CONCLUSIONS: Both concurrent and past adiposity were associated with a higher WMH volume. The detrimental effects of adiposity on WMH occurred throughout midlife and in the elderly and may still exist after changes in obesity status.


Asunto(s)
Sustancia Blanca , Humanos , Anciano , Sustancia Blanca/diagnóstico por imagen , Adiposidad , Sobrepeso/diagnóstico por imagen , Estudios Transversales , Imagen por Resonancia Magnética , Obesidad/diagnóstico por imagen
12.
Alzheimers Res Ther ; 16(1): 16, 2024 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-38254212

RESUMEN

BACKGROUND: Blood-based biomarkers for dementia are gaining attention due to their non-invasive nature and feasibility in regular healthcare settings. Here, we explored the associations between 249 metabolites with all-cause dementia (ACD), Alzheimer's disease (AD), and vascular dementia (VaD) and assessed their predictive potential. METHODS: This study included 274,160 participants from the UK Biobank. Cox proportional hazard models were employed to investigate longitudinal associations between metabolites and dementia. The importance of these metabolites was quantified using machine learning algorithms, and a metabolic risk score (MetRS) was subsequently developed for each dementia type. We further investigated how MetRS stratified the risk of dementia onset and assessed its predictive performance, both alone and in combination with demographic and cognitive predictors. RESULTS: During a median follow-up of 14.01 years, 5274 participants developed dementia. Of the 249 metabolites examined, 143 were significantly associated with incident ACD, 130 with AD, and 140 with VaD. Among metabolites significantly associated with dementia, lipoprotein lipid concentrations, linoleic acid, sphingomyelin, glucose, and branched-chain amino acids ranked top in importance. Individuals within the top tertile of MetRS faced a significantly greater risk of developing dementia than those in the lowest tertile. When MetRS was combined with demographic and cognitive predictors, the model yielded the area under the receiver operating characteristic curve (AUC) values of 0.857 for ACD, 0.861 for AD, and 0.873 for VaD. CONCLUSIONS: We conducted the largest metabolome investigation of dementia to date, for the first time revealed the metabolite importance ranking, and highlighted the contribution of plasma metabolites for dementia prediction.


Asunto(s)
Enfermedad de Alzheimer , Demencia Vascular , Humanos , Metaboloma , Plasma , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/epidemiología , Algoritmos
13.
Nat Hum Behav ; 8(1): 164-180, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37857874

RESUMEN

The cerebral ventricles are recognized as windows into brain development and disease, yet their genetic architectures, underlying neural mechanisms and utility in maintaining brain health remain elusive. Here we aggregated genetic and neuroimaging data from 61,974 participants (age range, 9 to 98 years) in five cohorts to elucidate the genetic basis of ventricular morphology and examined their overlap with neuropsychiatric traits. Genome-wide association analysis in a discovery sample of 31,880 individuals identified 62 unique loci and 785 candidate genes associated with ventricular morphology. We replicated over 80% of loci in a well-matched cohort of lateral ventricular volume. Gene set analysis revealed enrichment of ventricular-trait-associated genes in biological processes and disease pathogenesis during both early brain development and degeneration. We explored the age-dependent genetic associations in cohorts of different age groups to investigate the possible roles of ventricular-trait-associated loci in neurodevelopmental and neurodegenerative processes. We describe the genetic overlap between ventricular and neuropsychiatric traits through comprehensive integrative approaches under correlative and causal assumptions. We propose the volume of the inferior lateral ventricles as a heritable endophenotype to predict the risk of Alzheimer's disease, which might be a consequence of prodromal Alzheimer's disease. Our study provides an advance in understanding the genetics of the cerebral ventricles and demonstrates the potential utility of ventricular measurements in tracking brain disorders and maintaining brain health across the lifespan.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Niño , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Estudio de Asociación del Genoma Completo , Fenotipo , Ventrículos Cerebrales/diagnóstico por imagen , Ventrículos Cerebrales/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patología
14.
Geroscience ; 46(2): 2265-2279, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37926784

RESUMEN

Healthy lifestyle might alleviate the socioeconomic inequities in health, but the extent of the joint and interactive effects of these two factors on dementia are unclear. This study aimed to detect the joint and interactive associations of socioeconomic status (SES) and lifestyle factors with incident dementia risk, and the underlying brain imaging alterations. Cox proportional hazards analysis was performed to test the joint and interactive associations. Partial correlation analysis was performed to reflect the brain imaging alterations. A total of 276,730 participants with a mean age of 55.9 (±8.0) years old from UK biobank were included. Over 8.5 (±2.6) years of follow-up, 3013 participants were diagnosed with dementia. Participants with high SES and most healthy lifestyle had a significantly lower risk of incident dementia (HR=0.19, 95% CI=0.14 to 0.26, P<2×10-16), Alzheimer's disease (AD, HR=0.19, 95% CI=0.13 to 0.29, P=8.94×10-15), and vascular dementia (HR=0.24, 95% CI=0.12 to 0.48, P=7.57×10-05) compared with participants with low SES and an unhealthy lifestyle. Significant interactions were found between SES and lifestyle on dementia (P=0.002) and AD (P=0.001) risks; the association between lifestyle and dementia was stronger among those of high SES. The combination of high SES and healthy lifestyle was positively associated with higher volumes in brain regions vulnerable to dementia-related atrophy. These findings suggest that SES and lifestyle significantly interact and influence dementia with its related brain structure phenotypes.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Estudios Prospectivos , Estilo de Vida , Clase Social , Encéfalo
16.
Stroke Vasc Neurol ; 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37827852

RESUMEN

INTRODUCTION: Evidence supporting cardiovascular diseases could increase the risk of dementia remains fragmented. A comprehensive study to illuminate the distinctive associations across different dementia types is still lacking. This study is sought to: (1) determine the clinical validity of Framingham General Cardiovascular Risk Score (FGCRS) for dementia assessment and (2) examine the associations between cardiovascular diseases and the risk of dementia. METHODS: A total of 432 079 dementia-free individuals at baseline from UK Biobank were included. Multivariable Cox proportional hazard models were used to investigate the prospective associations for FGCRS and a series of cardiovascular diseases with all-cause dementia (ACD) and its major components, Alzheimer's disease (AD) and vascular dementia (VaD). RESULTS: During a median follow-up of 110.1 months, 4711 individuals were diagnosed with dementia. FGCRS was associated with increased risks across the dementia spectrum. In stratification analysis, high-risk groups have demonstrated the greatest dementia burdens, particularly to VaD. Over 74 traits, 9 adverse associations, such as chronic ischaemic heart disease (ACD: HR=1.354; AD: HR=1.269; VaD: HR=1.768), atrioventricular block (ACD: HR=1.562; AD: HR=1.556; VaD: HR=2.069), heart failure (ACD: HR=1.639; AD: HR=1.543; VaD: HR=2.141) and hypotension (ACD: HR=2.912; AD: HR=2.361; VaD: HR=3.315) were observed. Several distinctions were also found, with atrial fibrillation, cerebral infarction, and haemorrhage only associated with greater risks of ACD and VaD. DISCUSSION: By identifying distinctive associations between cardiovascular diseases and dementia, this study has established a comprehensive 'mapping' that may untangle the long-standing discrepancy. FGCRS has demonstrated its predictivity beyond cardiovascular diseases burdens, suggesting potential opportunities for implantation.

17.
J Neurochem ; 166(6): 972-981, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37565992

RESUMEN

Potential associations between the risk of neurodegenerative diseases and circulating levels of amino acids have been implied in both experimental research and observational studies. However, because of the confounding and reverse causality, the findings could be biased. We aimed to determine whether circulating amino acid levels have potential effects on the risk of neurodegenerative diseases through a more robust analysis. So, we performed a total of two MR analyses, a discovery two-sample MR analysis, and a replication test, using summary-level genome-wide association study (GWAS) data, both with circulating levels of amino acids as exposure and risk of neurodegenerative diseases as an outcome. The potential causalities between nine amino acids (Glutamine [Glu], Leucine [Leu], Isoleucine [Ile], Phenylalanine [Phe], Valine [Val], Alanine [Ala], Tyrosine [Tyr], Histidine [His], and Glycine [Gly]) and six neurodegenerative disorders (Alzheimer's disease [AD], Parkinson's disease [PD], Multiple sclerosis [MS], Frontotemporal dementia [FTD], Lewy body dementia [DLB], Amyotrophic lateral sclerosis [ALS]) were explored in this study. According to the discovery MR analysis, 1 SD. increase in circulating levels of Gln was genetically determined to result in a 13% lower risk of AD (IVW ORSD [95% CI] = 0.872 [0.822, 0.926]; FDR = 7.46 × 10-5 ) while PD risk was decreased to 63% per SD. increase of circulating Leu levels (IVW ORSD [95% CI] = 0.628 [0.467, 0.843]; FDR = 0.021). Results from the replication test provide further evidence of the potential association between circulating Gln levels and AD risk (IVW ORSD [95% CI] = 0.094 [0.028, 0.311]; FDR = 9.98 × 10-4 ). Meanwhile, sensitivity analysis demonstrated that the significant relationships revealed by our two-sample MR outcomes were reliable. Our analyses provided robust evidence of causal associations between circulating levels of Gln and AD risk as well as circulating Leu levels and risk of PD. However, the underlying mechanisms remain to be further investigated.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad por Cuerpos de Lewy , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Aminoácidos/genética , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Enfermedades Neurodegenerativas/genética , Glutamina , Causalidad
18.
Alzheimers Dement ; 19(9): 3965-3976, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37102212

RESUMEN

INTRODUCTION: Low hemoglobin and anemia are associated with cognitive impairment and Alzheimer's disease (AD). However, the associations of other blood cell indices with incident dementia risk and the underlined mechanisms are unknown. METHODS: Three hundred thirteen thousand four hundred forty-eight participants from the UK Biobank were included. Cox and restricted cubic spline models were used to investigate linear and non-linear longitudinal associations. Mendelian randomization analysis was used to identify causal associations. Linear regression models were used to explore potential mechanisms driven by brain structures. RESULTS: During a mean follow-up of 9.03 years, 6833 participants developed dementia. Eighteen indices were associated with dementia risk regarding erythrocytes, immature erythrocytes, and leukocytes. Anemia was associated with a 56% higher risk of developing dementia. Hemoglobin and red blood cell distribution width were causally associated with AD. Extensive associations exist between most blood cell indices and brain structures. DISCUSSION: These findings consolidated associations between blood cells and dementia. HIGHLIGHT: Anemia was associated with 56% higher risk for all-cause dementia. Hematocrit percentage, mean corpuscular volume, platelet crit, and mean platelet volume had U-shaped associations with incident dementia risk. Hemoglobin (HGB) and red blood cell distribution width had causal effects on Alzheimer's risk. HGB and anemia were associated with brain structure alterations.


Asunto(s)
Enfermedad de Alzheimer , Anemia , Humanos , Estudios Prospectivos , Anemia/epidemiología , Índices de Eritrocitos , Hemoglobinas , Enfermedad de Alzheimer/epidemiología
19.
Geroscience ; 45(3): 1997-2009, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37046127

RESUMEN

Cohort studies report inconsistent associations between omega-3 polyunsaturated fatty acids (n-3 PUFA) or fish oil and dementia risk. Furthermore, evidence relating omega-6 polyunsaturated fatty acids (n-6 PUFA) with dementia is scarce. Here, we included 440,750 dementia-free participants from UK Biobank to comprehensively investigate the associations between plasma levels of different types of PUFA, fish oil supplementation, and dementia risk. During a median follow-up of 9.25 years, 7768 incident dementia events occurred. Higher plasma levels of five PUFA measures showed consistent associations with lower dementia risk (hazard ratios [95% confidence intervals] for per standard deviation increment of plasma concentrations 0.85 [0.81-0.89] for total PUFAs; 0.90 [0.86-0.95] for omega-3 PUFAs; 0.92 [0.87-0.96] for docosahexaenoic acid (DHA); 0.86 [0.82-0.90] for omega-6 PUFAs; 0.86 [0.82-0.90] for linoleic acid (LA); all p < 0.001). Compared with non-users, fish oil supplement users had a 7% decreased risk of developing all-cause dementia (0.93 [0.89-0.97], p = 0.002), and the relationship was partially mediated by plasma n-3 PUFA levels (omega-3 PUFAs: proportion of mediation = 57.99%; DHA: proportion of mediation = 56.95%). Furthermore, we observed significant associations of plasma n-3 PUFA levels and fish oil supplementation with peripheral immune markers that were related to dementia risk, as well as the positive associations of plasma PUFA levels with brain gray matter volumes and white matter microstructural integrity, suggesting they may affect dementia risk by affecting peripheral immunity and brain structure. Taken together, higher plasma PUFA levels and fish oil supplementation were associated with lower risk of incident dementia. This study may support the value of interventions to target PUFAs (specifically n-3 PUFAs) to prevent dementia.


Asunto(s)
Ácidos Grasos Omega-3 , Aceites de Pescado , Humanos , Aceites de Pescado/química , Estudios Prospectivos , Ácidos Grasos Insaturados , Ácidos Docosahexaenoicos , Estudios de Cohortes , Suplementos Dietéticos
20.
Nat Hum Behav ; 7(7): 1185-1195, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37024724

RESUMEN

Previous hypothesis-driven research has identified many risk factors linked to dementia. However, the multiplicity and co-occurrence of risk factors have been underestimated. Here we analysed data of 344,324 participants from the UK Biobank with 15 yr of follow-up data for 210 modifiable risk factors. We first conducted an exposure-wide association study and then combined factors associated with dementia to generate composite scores for different domains. We then evaluated their joint associations with dementia in a multivariate Cox model. We estimated the potential impact of eliminating the unfavourable profiles of risk domains on dementia using population attributable fraction. The associations varied by domain, with lifestyle (16.6%), medical history (14.0%) and socioeconomic status (13.5%) contributing to the majority of dementia cases. Overall, we estimated that up to 47.0%-72.6% of dementia cases could be prevented.


Asunto(s)
Demencia , Humanos , Demencia/epidemiología , Demencia/etiología , Demencia/prevención & control , Bancos de Muestras Biológicas , Factores de Riesgo , Estilo de Vida , Reino Unido/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...