Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 329, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172565

RESUMEN

The expression level of SLC35A3 is associated with the prognosis of many cancers, but its role in colorectal cancer (CRC) is unclear. The purpose of our study was to elucidate the role of SLC35A3 in CRC. The expression levels of SLC35A3 in CRC were evaluated through tumor immune resource assessment (TIMER), The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), International Cancer Genome Consortium (ICGC), Human Protein Atlas (HPA), qRT-PCR, and immunohistochemical evaluation. TCGA, GEO, and ICGC databases were used to analyze the diagnostic and prognostic value of SLC35A3 in CRC. A overall survival (OS) model was constructed and validated based on the expression level of SLC35A3 and multivariable analysis results. The cBioPortal tool was used to analyze SLC35A3 mutation in CRC. The UALCAN tool was used to analyze the promoter methylation level of SLC35A3 in colorectal cancer. In addition, the role of SLC35A3 in CRC was determined through GO analysis, KEGG analysis, gene set enrichment analysis (GSEA), immune infiltration analysis, and immune checkpoint correlation analysis. In vitro experiments validated the function of SLC35A3 in colorectal cancer cells. Compared with adjacent normal tissues and colonic epithelial cells, the expression of SLC35A3 was decreased in CRC tissues and CRC cell lines. Low expression of SLC35A3 was associated with N stage, pathological stage, and lymphatic infiltration, and it was unfavorable for OS, disease-specific survival (DSS), recurrence-free survival (RFS), and post-progression survival (PPS). According to the Receiver Operating Characteristic (ROC) analysis, SLC35A3 is a potential important diagnostic biomarker for CRC patients. The nomograph based on the expression level of SLC35A3 showed a better predictive model for OS than single prognostic factors and TNM staging. SLC35A3 has multiple types of mutations in CRC, and its promoter methylation level is significantly decreased. GO and KEGG analysis indicated that SLC35A3 may be involved in transmembrane transport protein activity, cell communication, and interaction with neurotransmitter receptors. GSEA revealed that SLC35A3 may be involved in energy metabolism, DNA repair, and cancer pathways. In addition, SLC35A3 was closely related to immune cell infiltration and immune checkpoint expression. Immunohistochemistry confirmed the positive correlation between SLC35A3 and helper T cell infiltration. In vitro experiments showed that overexpression of SLC35A3 inhibited the proliferation and invasion capability of colorectal cancer cells and promoted apoptosis. The results of this study indicate that decreased expression of SLC35A3 is closely associated with poor prognosis and immune cell infiltration in colorectal cancer, and it can serve as a promising independent prognostic biomarker and potential therapeutic target.


Asunto(s)
Apoptosis , Neoplasias Colorrectales , Humanos , Biomarcadores , Comunicación Celular , Línea Celular , Neoplasias Colorrectales/genética , Pronóstico
2.
J Hepatocell Carcinoma ; 11: 1-13, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38223555

RESUMEN

Background: Oncolytic virus (OV) therapy has emerged as a promising novel form of immunotherapy. Moreover, an increasing number of studies have shown that the therapeutic efficacy of OV can be further improved by arming OVs with immune-stimulating molecules. Methods: In this study, we used reverse genetics to produce a novel influenza A virus, termed IAV-OX40L, which contained the immune-stimulating molecule OX40L gene in the influenza virus nonstructural (NS1) protein gene. The oncolytic effect of IAV-OX40L was explored on hepatocellular carcinoma (HCC)HCC cells in vitro and in vivo. Results: Hemagglutination titers of the IAV-OX40L virus were stably 27-28 in specific-pathogen-free chicken embryos. The morphology and size distribution of IAV-OX40L are similar to those of the wild-type influenza. Expression of OX40L protein was confirmed by Western blot and immunofluorescence. MTS assays showed that the cytotoxicity of IAV-OX40L was higher in HCC cells (HepG2 and Huh7) than in normal liver cells (MIHA) in a time- and dose-dependent manner in vitro. We found that intratumoral injection of IAV-OX40L reduced tumor growth and increased the survival rate of mice compared with PR8-treated controls in vivo. In addition, the pathological results showed that IAV-OX40L selectively destroyed tumor tissues without harming liver and lung tissues. CD4+ and CD8+ T cells of the IAV-OX40L group were significantly increased in the splenic lymphocytes of mice. Further validation confirmed that IAV-OX40L enhanced the immune response mainly by activating Th1-dominant immune cells, releasing interferon-γ and interleukin-2. Conclusion: Taken together, our findings demonstrate the novel chimeric influenza OV could provide a potential therapeutic strategy for combating HCC and improve the effectiveness of virotherapy for cancer therapy.

3.
Hum Gene Ther ; 35(1-2): 48-58, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37646399

RESUMEN

Oncolytic viruses are able to lyse tumor cells selectively in the liver without killing normal hepatocytes, in addition to activating the immune response. Oncolytic virus therapy is expected to revolutionize the treatment of liver cancer, including hepatocellular carcinoma (HCC), one of the most frequent and fatal malignancies. In this study, reverse genetics techniques were exploited to load NA fragments of the A/PuertoRico/8/34 virus (PR8) with GV1001 peptides derived from human telomerase reverse transcriptase. An in vitro assessment of the therapeutic effect of the recombinant oncolytic virus was followed by an in vivo study in mice with HCC. The recombinant virus was verified by sequencing of the recombinant viral gene sequence, and viral virulence was detected by hemagglutination assays and based on the 50% tissue culture infectious dose (TCID50). The morphological structure of the virus was observed by electron microscopy, and GV1001 peptide was localized by cellular immunofluorescence. The selective cytotoxicity of the recombinant oncolytic virus in vitro was demonstrated in cultured HCC cells and normal hepatocytes, as only the tumor cells were killed; the normal cells were not significantly altered. Consistent with the in vitro results, the recombinant oncolytic influenza virus significantly inhibited liver tumor growth in mice in vivo, in addition to inducing an antitumor immune response, including an increase in the number of CD4+ and CD8+ T lymphocytes and, in turn, improving survival. Our results suggest that oncolytic influenza virus carrying GV1001 is a promising immunotherapy in patients with HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Viroterapia Oncolítica , Virus Oncolíticos , Orthomyxoviridae , Humanos , Ratones , Animales , Virus Oncolíticos/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patología , Ensayos Antitumor por Modelo de Xenoinjerto , Viroterapia Oncolítica/métodos , Inmunidad , Línea Celular Tumoral
4.
J Gastroenterol ; 59(2): 119-137, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37925679

RESUMEN

BACKGROUND: Three-dimensional (3D) chromatin architecture frequently altered in cancer. However, its changes during the pathogenesis of hepatocellular carcinoma (HCC) remained elusive. METHODS: Hi-C and RNA-seq were applied to study the 3D chromatin landscapes and gene expression of HCC and ANHT. Hi-C Pro was used to generate genome-wide raw interaction matrices, which were normalized via iterative correction (ICE). Moreover, the chromosomes were divided into different compartments according to the first principal component (E1). Furthermore, topologically associated domains (TADs) were visualized via WashU Epigenome Browser. Furthermore, differential expression analysis of ANHT and HCC was performed using the DESeq2 R package. Additionally, dysregulated genes associated with 3D genome architecture altered were confirmed using TCGA, qRT-PCR, immunohistochemistry (IHC), etc. RESULTS: First, the intrachromosomal interactions of chr1, chr2, chr5, and chr11 were significantly different, and the interchromosomal interactions of chr4-chr10, chr13-chr21, chr15-chr22, and chr16-chr19 are remarkably different between ANHT and HCC, which resulted in the up-regulation of TP53I3 and ZNF738 and the down-regulation of APOC3 and APOA5 in HCC. Second, 49 compartment regions on 18 chromosomes have significantly switched (A-B or B-A) during HCC tumorigenesis, contributing to up-regulation of RAP2A. Finally, a tumor-specific TAD boundary located on chr5: 6271000-6478000 and enhancer hijacking were identified in HCC tissues, potentially associated with the elevated expression of MED10, whose expression were associated with poor prognosis of HCC patients. CONCLUSION: This study demonstrates the crucial role of chromosomal structure variation in HCC oncogenesis and potential novel biomarkers of HCC, laying a foundation for cancer precision medicine development.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Cromatina/genética , Virus de la Hepatitis B/genética , Neoplasias Hepáticas/patología , Cromosomas/metabolismo , Carcinogénesis/genética , Transformación Celular Neoplásica/genética , Proteínas de Unión al GTP rap/genética , Proteínas de Unión al GTP rap/metabolismo , Complejo Mediador/genética , Complejo Mediador/metabolismo
5.
Virulence ; : 2284515, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37974334

RESUMEN

Human metapneumovirus (HMPV) is a leading cause of acute respiratory tract infections in infants and children. Currently, no approved HMPV vaccine is available. We developed a novel recombinant influenza virus, which carried partial HMPV F protein (HMPV-F) epitopes, utilizing reverse genetics. The novel single-stranded RNA virus, termed rFLU-HMPV/F-NA, was synthesized in the neuraminidase (NA) fragment of influenza virus A/PuertoRico/8/34 (PR8). The morphological characteristics of rFLU-HMPV/F-NA were consistent with the wild-type flu virus. The virus could passage in specific pathogen-free (SPF) chicken embryos for at least five consecutive generations with haemagglutinin (HA) titres of 28-9 or 8-9LogTCID50/mL. BALB/c mice were intranasally immunized at 21-day intervals with 104 TCID50 (low-dose group) or 106 TCID50 (high-dose group) rFLU-HMPV/F-NA, and PBS or PR8 vaccine was used for the control group. rFLU-HMPV/F-NA induced robust humoral, mucosal, and cellular immune responses in vivo in a dose-dependent manner. More importantly, wt clinical HMPV isolate challenge studies showed that rFLU-HMPV/F-NA provided significant immune protection against HMPV infection compared to the PBS or PR8 vaccine control group, as shown by improved histopathological changes and reduced viral titres in the lungs of immunized mice post-challenge. These findings demonstrate that rFLU-HMPV/F-NA has potential as a promising HMPV candidate vaccine and warrants further investigation into its control of HMPV infection.

6.
Front Immunol ; 14: 1235575, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37799727

RESUMEN

Objective: Bazhen Decoction (BZD) is a common adjuvant therapy drug for colorectal cancer (CRC), although its anti-tumor mechanism is unknown. This study aims to explore the core components, key targets, and potential mechanisms of BZD treatment for CRC. Methods: The Traditional Chinese Medicine Systems Pharmacology (TCMSP) was employed to acquire the BZD's active ingredient and targets. Meanwhile, the Drugbank, Therapeutic Target Database (TTD), DisGeNET, and GeneCards databases were used to retrieve pertinent targets for CRC. The Venn plot was used to obtain intersection targets. Cytoscape software was used to construct an "herb-ingredient-target" network and identify core targets. GO and KEGG pathway enrichment analyses were conducted using R language software. Molecular docking of key ingredients and core targets of drugs was accomplished using PyMol and Autodock Vina software. Cell and animal research confirmed Bazhen Decoction efficacy and mechanism in treating colorectal cancer. Results: BZD comprises 173 effective active ingredients. Using four databases, 761 targets related to CRC were identified. The intersection of BZD and CRC yielded 98 targets, which were utilized to construct the "herb-ingredient-target" network. The four key effector components with the most targets were quercetin, kaempferol, licochalcone A, and naringenin. Protein-protein interaction (PPI) analysis revealed that the core targets of BZD in treating CRC were AKT1, MYC, CASP3, ESR1, EGFR, HIF-1A, VEGFR, JUN, INS, and STAT3. The findings from molecular docking suggest that the core ingredient exhibits favorable binding potential with the core target. Furthermore, the GO and KEGG enrichment analysis demonstrates that BZD can modulate multiple signaling pathways related to CRC, like the T cell receptor, PI3K-Akt, apoptosis, P53, and VEGF signaling pathway. In vitro, studies have shown that BZD dose-dependently inhibits colon cancer cell growth and invasion and promotes apoptosis. Animal experiments have shown that BZD treatment can reverse abnormal expression of PI3K, AKT, MYC, EGFR, HIF-1A, VEGFR, JUN, STAT3, CASP3, and TP53 genes. BZD also increases the ratio of CD4+ T cells to CD8+ T cells in the spleen and tumor tissues, boosting IFN-γ expression, essential for anti-tumor immunity. Furthermore, BZD has the potential to downregulate the PD-1 expression on T cell surfaces, indicating its ability to effectively restore T cell function by inhibiting immune checkpoints. The results of HE staining suggest that BZD exhibits favorable safety profiles. Conclusion: BZD treats CRC through multiple components, targets, and metabolic pathways. BZD can reverse the abnormal expression of genes such as PI3K, AKT, MYC, EGFR, HIF-1A, VEGFR, JUN, STAT3, CASP3, and TP53, and suppresses the progression of colorectal cancer by regulating signaling pathways such as PI3K-AKT, P53, and VEGF. Furthermore, BZD can increase the number of T cells and promote T cell activation in tumor-bearing mice, enhancing the immune function against colorectal cancer. Among them, quercetin, kaempferol, licochalcone A, naringenin, and formaronetin are more highly predictive components related to the T cell activation in colorectal cancer mice. This study is of great significance for the development of novel anti-cancer drugs. It highlights the importance of network pharmacology-based approaches in studying complex traditional Chinese medicine formulations.


Asunto(s)
Neoplasias Colorrectales , Quempferoles , Animales , Ratones , Simulación del Acoplamiento Molecular , Caspasa 3 , Farmacología en Red , Linfocitos T CD8-positivos , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Quercetina , Proteína p53 Supresora de Tumor , Factor A de Crecimiento Endotelial Vascular , Neoplasias Colorrectales/tratamiento farmacológico , Receptores ErbB
7.
Int Immunopharmacol ; 120: 110323, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37207446

RESUMEN

OBJECTIVE: To evaluate targeted killing of hepatocellular carcinoma (HCC) cells by a recombinant oncolytic influenza virus expressing a PD-L1 antibody (rgFlu/PD-L1) and to develop a novel immunotherapy for HCC. METHODS: Using influenza virus reverse genetics, a recombinant oncolytic virus was generated in the background of the A/Puerto Rico/8/34 (PR8) virus, then identified via screening and passage in specific pathogen-free chicken embryos. Hepatocellular carcinoma cell killing by rgFlu/PD-L1 was confirmed in vitro and in vivo. Transcriptome analyses were used to explore PD-L1 expression and function. Western blotting revealed that PD-L1 activated the cGas-STING pathway. RESULTS: rgFlu/PD-L1 expressed the PD-L1 heavy and light chain in PB1 and PA, respectively; PR8 served as the backbone. The hemagglutinin titer of rgFlu/PD-L1 was 29, and the virus titer was 9-10 logTCID50/mL. Electron microscopy revealed that the rgFlu/PD-L1 morphology and size were consistent with wild-type influenza virus. The MTS assay showed that rgFlu/PD-L1 induced significant killing of HCC cells but not normal cells. rgFlu/PD-L1 inhibited PD-L1 expression and induced apoptosis in HepG2 cells. Notably, rgFlu/PD-L1 controlled the viability and function of CD8+ T cells by activating the cGas-STING pathway. CONCLUSION: rgFlu/PD-L1 activated the cGas-STING pathway in CD8+ T cells, causing them to kill HCC cells. This approach represents a novel immunotherapy for liver cancer.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Virus Oncolíticos , Orthomyxoviridae , Embrión de Pollo , Animales , Ratones , Linfocitos T CD8-positivos , Virus Oncolíticos/genética , Virus Oncolíticos/metabolismo , Antígeno B7-H1/metabolismo , Anticuerpos
8.
Front Microbiol ; 13: 1008684, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36267192

RESUMEN

Infectious diseases have always threatened human life, but with the development of vaccines, effective strategies for preventing and controlling these diseases have become available. The global outbreak of COVID-19 ushered in the advent of mRNA vaccine technologies, which quickly led to the introduction of mRNA vaccines effective against SARS-CoV-2. The success of this approach has stimulated research into the use of mRNA vaccines in the fight against other emerging as well as remerging infectious diseases. This review examines the constructive strategies and delivery systems used in mRNA vaccines and provides an overview of current clinical trials of those vaccines in the prevention of infectious diseases. The underlying mechanisms of mRNA vaccines are also discussed, including the double-edged sword of the innate immune response. Finally, the challenges but also the potential of mRNA vaccines are considered.

9.
Front Oncol ; 12: 975408, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36313716

RESUMEN

mRNA cancer vaccines show therapeutic potential for malignant tumors, including hepatocellular carcinoma (HCC). We optimized and synthesized stable mRNA encoding costimulator Oxford 40 ligand (OX40L). For systemic delivery, OX40L mRNAs were loaded into lipid nanoparticles (LNPs). The expression and costimulatory effects of OX40L were investigated in vitro. OX40L was expressed on the cell surface and costimulated T cells. In vivo, intratumoral injection of LNPs encapsulating OX40L mRNAs significantly reduced tumor growth and increased the survival of mice bearing H22 tumors. Importantly, CD4+ and CD8+ T cells were significantly increased in the OX40L mRNA group in vivo. Taken together, our findings provide a promising clinical strategy for immunotherapy for HCC using mRNA vaccines.

10.
Front Immunol ; 13: 887125, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35720301

RESUMEN

mRNA therapy is a novel anticancer strategy based on in vitro transcription (IVT), which has potential for the treatment of malignant tumors. The outbreak of the COVID-19 pandemic in the early 21st century has promoted the application of mRNA technologies in SARS-CoV-2 vaccines, and there has been a great deal of interest in the research and development of mRNA cancer vaccines. There has been progress in a number of key technologies, including mRNA production strategies, delivery systems, antitumor immune strategies, etc. These technologies have accelerated the progress and clinical applications of mRNA therapy, overcoming problems encountered in the past, such as instability, inefficient delivery, and weak immunogenicity of mRNA vaccines. This review provides a detailed overview of the production, delivery systems, immunological mechanisms, and antitumor immune response strategies for mRNA cancer vaccines. We list some mRNA cancer vaccines that are candidates for cancer treatment and discuss clinical trials in the field of tumor immunotherapy. In addition, we discuss the immunological mechanism of action by which mRNA vaccines destroy tumors as well as challenges and prospects for the future.


Asunto(s)
COVID-19 , Vacunas contra el Cáncer , Neoplasias , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Inmunoterapia , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Pandemias , ARN Mensajero/genética , ARN Mensajero/uso terapéutico , SARS-CoV-2 , Vacunas Sintéticas , Vacunas de ARNm
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA