Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(1): 302-314, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38114451

RESUMEN

Urban greenhouse gas emissions monitoring is essential to assessing the impact of climate mitigation actions. Using atmospheric continuous measurements of air quality and carbon dioxide (CO2), we developed a gradient-descent optimization system to estimate emissions of the city of Paris. We evaluated our joint CO2-CO-NOx optimization over the first SARS-CoV-2 related lockdown period, resulting in a decrease in emissions by 40% for NOx and 30% for CO2, in agreement with preliminary estimates using bottom-up activity data yet lower than the decrease estimates from Bayesian atmospheric inversions (50%). Before evaluating the model, we first provide an in-depth analysis of three emission data sets. A general agreement in the totals is observed over the region surrounding Paris (known as Île-de-France) since all the data sets are constrained by the reported national and regional totals. However, the data sets show disagreements in their sector distributions as well as in the interspecies ratios. The seasonality also shows disagreements among emission products related to nonindustrial stationary combustion (residential and tertiary combustion). The results presented in this paper show that a multispecies approach has the potential to provide sectoral information to monitor CO2 emissions over urban areas enabled by the deployment of collocated atmospheric greenhouse gases and air quality monitoring stations.


Asunto(s)
Contaminantes Atmosféricos , COVID-19 , Gases de Efecto Invernadero , Humanos , Contaminantes Atmosféricos/análisis , Dióxido de Carbono/análisis , SARS-CoV-2 , Teorema de Bayes , Control de Enfermedades Transmisibles , Gases de Efecto Invernadero/análisis
2.
J Hazard Mater ; 275: 31-6, 2014 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-24837462

RESUMEN

About 400,000 premature adult deaths attributable to air pollution occur each year in the European Region. Road transport emissions account for a significant share of this burden. While important technological improvements have been made for reducing particulate matter (PM) emissions from motor exhausts, no actions are currently in place to reduce the non-exhaust part of emissions such as those from brake wear, road wear, tyre wear and road dust resuspension. These "non-exhaust" sources contribute easily as much and often more than the tailpipe exhaust to the ambient air PM concentrations in cities, and their relative contribution to ambient PM is destined to increase in the future, posing obvious research and policy challenges. This review highlights the major and more recent research findings in four complementary fields of research and seeks to identify the current gaps in research and policy with regard to non-exhaust emissions. The objective of this article is to encourage and direct future research towards an improved understanding on the relationship between emissions, concentrations, exposure and health impact and on the effectiveness of potential remediation measures in the urban environment.


Asunto(s)
Contaminantes Atmosféricos/análisis , Vehículos a Motor , Contaminantes Atmosféricos/toxicidad , Contaminación del Aire/análisis , Contaminación del Aire/prevención & control , Ciudades , Polvo/análisis , Polvo/prevención & control , Monitoreo del Ambiente , Humanos , Modelos Teóricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...