Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nature ; 618(7963): 126-133, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37225984

RESUMEN

A spinal cord injury interrupts the communication between the brain and the region of the spinal cord that produces walking, leading to paralysis1,2. Here, we restored this communication with a digital bridge between the brain and spinal cord that enabled an individual with chronic tetraplegia to stand and walk naturally in community settings. This brain-spine interface (BSI) consists of fully implanted recording and stimulation systems that establish a direct link between cortical signals3 and the analogue modulation of epidural electrical stimulation targeting the spinal cord regions involved in the production of walking4-6. A highly reliable BSI is calibrated within a few minutes. This reliability has remained stable over one year, including during independent use at home. The participant reports that the BSI enables natural control over the movements of his legs to stand, walk, climb stairs and even traverse complex terrains. Moreover, neurorehabilitation supported by the BSI improved neurological recovery. The participant regained the ability to walk with crutches overground even when the BSI was switched off. This digital bridge establishes a framework to restore natural control of movement after paralysis.


Asunto(s)
Interfaces Cerebro-Computador , Encéfalo , Terapia por Estimulación Eléctrica , Rehabilitación Neurológica , Traumatismos de la Médula Espinal , Médula Espinal , Caminata , Humanos , Encéfalo/fisiología , Terapia por Estimulación Eléctrica/instrumentación , Terapia por Estimulación Eléctrica/métodos , Cuadriplejía/etiología , Cuadriplejía/rehabilitación , Cuadriplejía/terapia , Reproducibilidad de los Resultados , Médula Espinal/fisiología , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/rehabilitación , Traumatismos de la Médula Espinal/terapia , Caminata/fisiología , Pierna/fisiología , Rehabilitación Neurológica/instrumentación , Rehabilitación Neurológica/métodos , Masculino
2.
Neurology ; 98(2): 65-72, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35263267

RESUMEN

Neuromodulation devices are approved in the United States for the treatment of movement disorders, epilepsy, pain, and depression, and are used off-label for other neurologic indications. By 2035, advances in our understanding of neuroanatomical networks and in the mechanism of action of stimulation, coupled with developments in material science, miniaturization, energy storage, and delivery, will expand the use of neuromodulation devices. Neuromodulation approaches are flexible and modifiable. Stimulation can be targeted to a dysfunctional brain focus, region, or network, and can be delivered as a single treatment, continuously, according to a duty cycle, or in response to physiologic changes. Programming can be titrated and modified based on the clinical response or a physiologic biomarker. In addition to keeping pace with clinical and technological developments, neurologists in 2035 will need to navigate complex ethical and economic considerations to ensure access to neuromodulation technology for a rapidly expanding population of patients. This article provides an overview of systems in use today and those that are anticipated and highlights the opportunities and challenges for the future, some of which are technical, but most of which will be addressed by learning about brain networks, and from rapidly growing experience with neuromodulation devices.


Asunto(s)
Encefalopatías , Terapia por Estimulación Eléctrica , Epilepsia , Neurología , Encéfalo/fisiología , Encefalopatías/terapia , Epilepsia/terapia , Humanos
3.
Nat Med ; 28(2): 260-271, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35132264

RESUMEN

Epidural electrical stimulation (EES) targeting the dorsal roots of lumbosacral segments restores walking in people with spinal cord injury (SCI). However, EES is delivered with multielectrode paddle leads that were originally designed to target the dorsal column of the spinal cord. Here, we hypothesized that an arrangement of electrodes targeting the ensemble of dorsal roots involved in leg and trunk movements would result in superior efficacy, restoring more diverse motor activities after the most severe SCI. To test this hypothesis, we established a computational framework that informed the optimal arrangement of electrodes on a new paddle lead and guided its neurosurgical positioning. We also developed software supporting the rapid configuration of activity-specific stimulation programs that reproduced the natural activation of motor neurons underlying each activity. We tested these neurotechnologies in three individuals with complete sensorimotor paralysis as part of an ongoing clinical trial ( www.clinicaltrials.gov identifier NCT02936453). Within a single day, activity-specific stimulation programs enabled these three individuals to stand, walk, cycle, swim and control trunk movements. Neurorehabilitation mediated sufficient improvement to restore these activities in community settings, opening a realistic path to support everyday mobility with EES in people with SCI.


Asunto(s)
Traumatismos de la Médula Espinal , Estimulación de la Médula Espinal , Humanos , Pierna , Parálisis/rehabilitación , Médula Espinal/fisiología , Traumatismos de la Médula Espinal/rehabilitación , Caminata/fisiología
4.
Nature ; 590(7845): 308-314, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33505019

RESUMEN

Spinal cord injury (SCI) induces haemodynamic instability that threatens survival1-3, impairs neurological recovery4,5, increases the risk of cardiovascular disease6,7, and reduces quality of life8,9. Haemodynamic instability in this context is due to the interruption of supraspinal efferent commands to sympathetic circuits located in the spinal cord10, which prevents the natural baroreflex from controlling these circuits to adjust peripheral vascular resistance. Epidural electrical stimulation (EES) of the spinal cord has been shown to compensate for interrupted supraspinal commands to motor circuits below the injury11, and restored walking after paralysis12. Here, we leveraged these concepts to develop EES protocols that restored haemodynamic stability after SCI. We established a preclinical model that enabled us to dissect the topology and dynamics of the sympathetic circuits, and to understand how EES can engage these circuits. We incorporated these spatial and temporal features into stimulation protocols to conceive a clinical-grade biomimetic haemodynamic regulator that operates in a closed loop. This 'neuroprosthetic baroreflex' controlled haemodynamics for extended periods of time in rodents, non-human primates and humans, after both acute and chronic SCI. We will now conduct clinical trials to turn the neuroprosthetic baroreflex into a commonly available therapy for people with SCI.


Asunto(s)
Barorreflejo , Biomimética , Hemodinámica , Prótesis e Implantes , Traumatismos de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/terapia , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Vías Nerviosas , Primates , Ratas , Ratas Endogámicas Lew , Sistema Nervioso Simpático/citología , Sistema Nervioso Simpático/fisiología
5.
Artículo en Inglés | MEDLINE | ID: mdl-32863855

RESUMEN

OBJECTIVE: Conventional selection of pre-ictal EEG epochs for seizure prediction algorithm training data typically assumes a continuous pre-ictal brain state preceding a seizure. This is carried out by defining a fixed duration, pre-ictal time period before seizures from which pre-ictal training data epochs are uniformly sampled. However, stochastic physiological and pathological fluctuations in EEG data characteristics and underlying brain states suggest that pre-ictal state dynamics may be more complex, and selection of pre-ictal training data segments to reflect this could improve algorithm performance. METHODS: We propose a semi-supervised technique to select pre-ictal training data most distinguishable from interictal EEG according to pre-specified data characteristics. The proposed method uses hierarchical clustering to identify optimal pre-ictal data epochs. RESULTS: In this paper we compare the performance of a seizure forecasting algorithm with and without hierarchical clustering of pre-ictal periods in chronic iEEG recordings from six canines with naturally occurring epilepsy. Hierarchical clustering of training data improved results for Time In Warning (TIW) (0.18 vs. 0.23) and False Positive Rate (FPR) (0.5 vs. 0.59) when evaluated across all subjects (p<0.001, n=6). Results were mixed when evaluating TIW, FPR, and Sensitivity for individual dogs. CONCLUSION: Hierarchical clustering is a helpful method for training data selection overall, but should be evaluated on a subject-wise basis. SIGNIFICANCE: The clustering method can be used to optimize results of forecasting towards sensitivity or TIW or FPR, and therefore can be useful for epilepsy management.

6.
Nature ; 563(7729): 65-71, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30382197

RESUMEN

Spinal cord injury leads to severe locomotor deficits or even complete leg paralysis. Here we introduce targeted spinal cord stimulation neurotechnologies that enabled voluntary control of walking in individuals who had sustained a spinal cord injury more than four years ago and presented with permanent motor deficits or complete paralysis despite extensive rehabilitation. Using an implanted pulse generator with real-time triggering capabilities, we delivered trains of spatially selective stimulation to the lumbosacral spinal cord with timing that coincided with the intended movement. Within one week, this spatiotemporal stimulation had re-established adaptive control of paralysed muscles during overground walking. Locomotor performance improved during rehabilitation. After a few months, participants regained voluntary control over previously paralysed muscles without stimulation and could walk or cycle in ecological settings during spatiotemporal stimulation. These results establish a technological framework for improving neurological recovery and supporting the activities of daily living after spinal cord injury.


Asunto(s)
Tecnología Biomédica , Terapia por Estimulación Eléctrica , Parálisis/rehabilitación , Traumatismos de la Médula Espinal/rehabilitación , Caminata/fisiología , Actividades Cotidianas , Simulación por Computador , Electromiografía , Espacio Epidural , Humanos , Pierna/inervación , Pierna/fisiología , Pierna/fisiopatología , Locomoción/fisiología , Masculino , Neuronas Motoras/fisiología , Músculo Esquelético/inervación , Músculo Esquelético/fisiología , Músculo Esquelético/fisiopatología , Parálisis/fisiopatología , Parálisis/cirugía , Médula Espinal/citología , Médula Espinal/fisiología , Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/cirugía
7.
Nature ; 539(7628): 284-288, 2016 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-27830790

RESUMEN

Spinal cord injury disrupts the communication between the brain and the spinal circuits that orchestrate movement. To bypass the lesion, brain-computer interfaces have directly linked cortical activity to electrical stimulation of muscles, and have thus restored grasping abilities after hand paralysis. Theoretically, this strategy could also restore control over leg muscle activity for walking. However, replicating the complex sequence of individual muscle activation patterns underlying natural and adaptive locomotor movements poses formidable conceptual and technological challenges. Recently, it was shown in rats that epidural electrical stimulation of the lumbar spinal cord can reproduce the natural activation of synergistic muscle groups producing locomotion. Here we interface leg motor cortex activity with epidural electrical stimulation protocols to establish a brain-spine interface that alleviated gait deficits after a spinal cord injury in non-human primates. Rhesus monkeys (Macaca mulatta) were implanted with an intracortical microelectrode array in the leg area of the motor cortex and with a spinal cord stimulation system composed of a spatially selective epidural implant and a pulse generator with real-time triggering capabilities. We designed and implemented wireless control systems that linked online neural decoding of extension and flexion motor states with stimulation protocols promoting these movements. These systems allowed the monkeys to behave freely without any restrictions or constraining tethered electronics. After validation of the brain-spine interface in intact (uninjured) monkeys, we performed a unilateral corticospinal tract lesion at the thoracic level. As early as six days post-injury and without prior training of the monkeys, the brain-spine interface restored weight-bearing locomotion of the paralysed leg on a treadmill and overground. The implantable components integrated in the brain-spine interface have all been approved for investigational applications in similar human research, suggesting a practical translational pathway for proof-of-concept studies in people with spinal cord injury.


Asunto(s)
Interfaces Cerebro-Computador , Terapia por Estimulación Eléctrica/instrumentación , Trastornos Neurológicos de la Marcha/complicaciones , Trastornos Neurológicos de la Marcha/terapia , Marcha/fisiología , Prótesis Neurales , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/terapia , Animales , Modelos Animales de Enfermedad , Estimulación Eléctrica , Trastornos Neurológicos de la Marcha/fisiopatología , Pierna/fisiología , Locomoción/fisiología , Región Lumbosacra , Macaca mulatta , Masculino , Microelectrodos , Corteza Motora/fisiopatología , Parálisis/complicaciones , Parálisis/fisiopatología , Parálisis/terapia , Reproducibilidad de los Resultados , Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/fisiopatología , Tecnología Inalámbrica/instrumentación
8.
Epilepsy Behav ; 64(Pt A): 248-252, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27780085

RESUMEN

Excerpted proceedings of the Eighth International Workshop on Advances in Electrocorticography (ECoG), which convened October 15-16, 2015 in Chicago, IL, are presented. The workshop series has become the foremost gathering to present current basic and clinical research in subdural brain signal recording and analysis.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo , Electrocorticografía , Investigación Biomédica , Humanos
9.
J Neural Eng ; 12(6): 066012, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26469737

RESUMEN

OBJECTIVE: Using the Medtronic Activa® PC + S system, this study investigated how passive joint manipulation, reaching behavior, and deep brain stimulation (DBS) modulate local field potential (LFP) activity in the subthalamic nucleus (STN) and globus pallidus (GP). APPROACH: Five non-human primates were implanted unilaterally with one or more DBS leads. LFPs were collected in montage recordings during resting state conditions and during motor tasks that facilitate the expression of parkinsonian motor signs. These recordings were made in the naïve state in one subject, in the parkinsonian state in two subjects, and in both naïve and parkinsonian states in two subjects. MAIN RESULTS: LFPs measured at rest were consistent over time for a given recording location and parkinsonian state in a given subject; however, LFPs were highly variable between subjects, between and within recording locations, and across parkinsonian states. LFPs in both naïve and parkinsonian states across all recorded nuclei contained a spectral peak in the beta band (10-30 Hz). Moreover, the spectral content of recorded LFPs was modulated by passive and active movement of the subjects' limbs. LFPs recorded during a cued-reaching task displayed task-related beta desynchronization in STN and GP. The bidirectional capabilities of the Activa® PC + S also allowed for recording LFPs while delivering DBS. The therapeutic effect of STN DBS on parkinsonian rigidity outlasted stimulation for 30-60 s, but there was no correlation with beta band power. SIGNIFICANCE: This study emphasizes (1) the variability in spontaneous LFPs amongst subjects and (2) the value of using the Activa® PC + S system to record neural data in the context of behavioral tasks that allow one to evaluate a subject's symptomatology.


Asunto(s)
Estimulación Encefálica Profunda/métodos , Modelos Animales de Enfermedad , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/terapia , Animales , Estimulación Encefálica Profunda/instrumentación , Femenino , Macaca mulatta , Primates
10.
J Neural Eng ; 11(1): 016009, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24445430

RESUMEN

OBJECTIVE: Analysis of intra- and perioperatively recorded cortical and basal ganglia local field potentials in human movement disorders has provided great insight into the pathophysiology of diseases such as Parkinson's, dystonia, and essential tremor. However, in order to better understand the network abnormalities and effects of chronic therapeutic stimulation in these disorders, long-term recording from a fully implantable data collection system is needed. APPROACH: A fully implantable investigational data collection system, the Activa® PC + S neurostimulator (Medtronic, Inc., Minneapolis, MN), has been developed for human use. Here, we tested its utility for extended intracranial recording in the motor system of a nonhuman primate. The system was attached to two quadripolar paddle arrays: one covering sensorimotor cortex, and one covering a proximal forelimb muscle, to study simultaneous cortical field potentials and electromyography during spontaneous transitions from rest to movement. MAIN RESULTS: Over 24 months of recording, movement-related changes in physiologically relevant frequency bands were readily detected, including beta and gamma signals at approximately 2.5 µV/[Formula: see text] and 0.7 µV/[Formula: see text], respectively. The system architecture allowed for flexible recording configurations and algorithm triggered data recording. In the course of physiological analyses, sensing artifacts were observed (∼1 µVrms stationary tones at fixed frequency), which were mitigated either with post-processing or algorithm design and did not impact the scientific conclusions. Histological examination revealed no underlying tissue damage; however, a fibrous capsule had developed around the paddles, demonstrating a potential mechanism for the observed signal amplitude reduction. SIGNIFICANCE: This study establishes the usefulness of this system in measuring chronic brain and muscle signals. Use of this system may potentially be valuable in human trials of chronic brain recording in movement disorders, a next step in the design of closed-loop neurostimulation paradigms.


Asunto(s)
Corteza Cerebral/fisiología , Electromiografía/métodos , Neuroestimuladores Implantables , Animales , Ganglios Basales/fisiología , Encéfalo/patología , Corteza Cerebral/patología , Fenómenos Electrofisiológicos/fisiología , Femenino , Neuroestimuladores Implantables/efectos adversos , Macaca mulatta , Movimiento , Trastornos del Movimiento/rehabilitación , Diseño de Prótesis , Técnicas Estereotáxicas
11.
Artículo en Inglés | MEDLINE | ID: mdl-24111143

RESUMEN

Modulation of neural activity through electrical stimulation of tissue is an effective therapy for neurological diseases such as Parkinson's disease and essential tremor. Researchers are exploring improving therapy through adjustment of stimulation parameters based upon sensed data. This requires classifiers to extract features and estimate patient state. It also requires algorithms to appropriately map the state estimation to stimulation parameters. The latter, known as the control policy algorithm, is the focus of this work. Because the optimal control policy algorithms for the nervous system are not fully characterized at this time, we have implemented a generic control policy framework to facilitate exploratory research and rapid prototyping of new neuromodulation strategies.


Asunto(s)
Estimulación Eléctrica , Temblor Esencial/terapia , Trastornos del Movimiento/terapia , Enfermedades del Sistema Nervioso/terapia , Neurotransmisores/fisiología , Enfermedad de Parkinson/terapia , Algoritmos , Gráficos por Computador , Simulación por Computador , Humanos , Modelos Teóricos , Sistemas en Línea , Interfaz Usuario-Computador
12.
Front Neural Circuits ; 6: 117, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23346048

RESUMEN

While modulating neural activity through stimulation is an effective treatment for neurological diseases such as Parkinson's disease and essential tremor, an opportunity for improving neuromodulation therapy remains in automatically adjusting therapy to continuously optimize patient outcomes. Practical issues associated with achieving this include the paucity of human data related to disease states, poorly validated estimators of patient state, and unknown dynamic mappings of optimal stimulation parameters based on estimated states. To overcome these challenges, we present an investigational platform including: an implanted sensing and stimulation device to collect data and run automated closed-loop algorithms; an external tool to prototype classifier and control-policy algorithms; and real-time telemetry to update the implanted device firmware and monitor its state. The prototyping system was demonstrated in a chronic large animal model studying hippocampal dynamics. We used the platform to find biomarkers of the observed states and transfer functions of different stimulation amplitudes. Data showed that moderate levels of stimulation suppress hippocampal beta activity, while high levels of stimulation produce seizure-like after-discharge activity. The biomarker and transfer function observations were mapped into classifier and control-policy algorithms, which were downloaded to the implanted device to continuously titrate stimulation amplitude for the desired network effect. The platform is designed to be a flexible prototyping tool and could be used to develop improved mechanistic models and automated closed-loop systems for a variety of neurological disorders.

13.
Artículo en Inglés | MEDLINE | ID: mdl-19965049

RESUMEN

An implantable bi-directional brain-machine interface (BMI) prototype is presented. With sensing, algorithm, wireless telemetry, and stimulation therapy capabilities, the system is designed for chronic studies exploring closed-loop and diagnostic opportunities for neuroprosthetics. In particular, we hope to enable fundamental chronic research into the physiology of neurological disorders, define key electrical biomarkers related to disease, and apply this learning to patient-specific algorithms for therapeutic stimulation and diagnostics. The ultimate goal is to provide practical neuroprosthetics with adaptive therapy for improved efficiency and efficacy.


Asunto(s)
Encéfalo/fisiopatología , Terapia por Estimulación Eléctrica/instrumentación , Electroencefalografía/instrumentación , Enfermedades del Sistema Nervioso/rehabilitación , Procesamiento de Señales Asistido por Computador/instrumentación , Telemetría/instrumentación , Interfaz Usuario-Computador , Investigación Biomédica/instrumentación , Enfermedad Crónica , Electrodos Implantados , Diseño de Equipo , Análisis de Falla de Equipo , Humanos , Enfermedades del Sistema Nervioso/diagnóstico , Prótesis e Implantes , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Terapia Asistida por Computador/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...