Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Neurosci Lett ; 666: 1-4, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29246791

RESUMEN

Neuronal gap junctional protein connexin 36 (Cx36) contributes to neuronal death following a range of acute brain insults such as ischemia, traumatic brain injury and epilepsy. Whether Cx36 contributes to neuronal death and pathological outcomes in chronic neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), is not known. We show here that the expression of Cx36 is significantly decreased in lumbar segments of the spinal cord of both human ALS subjects and SOD1G93A mice as compared to healthy human and wild-type mouse controls, respectively. In purified neuronal cultures prepared from the spinal cord of wild-type mice, knockdown of Cx36 reduces neuronal death caused by overexpression of the mutant human SOD1-G93A protein. Taken together, these data suggest a possible contribution of Cx36 to ALS pathogenesis. A perspective for the use of blockers of Cx36 gap junction channels for ALS therapy is discussed.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Conexinas/metabolismo , Animales , Modelos Animales de Enfermedad , Uniones Comunicantes/metabolismo , Humanos , Ratones , Neuronas Motoras/metabolismo , Médula Espinal/metabolismo , Superóxido Dismutasa-1/metabolismo , Proteína delta-6 de Union Comunicante
2.
PLoS One ; 10(5): e0125395, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26017008

RESUMEN

Pharmacological blockade or genetic knockout of neuronal connexin 36 (Cx36)-containing gap junctions reduces neuronal death caused by ischemia, traumatic brain injury and NMDA receptor (NMDAR)-mediated excitotoxicity. However, whether Cx36 gap junctions contribute to neuronal death via channel-dependent or channel-independent mechanism remains an open question. To address this, we manipulated connexin protein expression via lentiviral transduction of mouse neuronal cortical cultures and analyzed neuronal death twenty-four hours following administration of NMDA (a model of NMDAR excitotoxicity) or oxygen-glucose deprivation (a model of ischemic injury). In cultures prepared from wild-type mice, over-expression and knockdown of Cx36-containing gap junctions augmented and prevented, respectively, neuronal death from NMDAR-mediated excitotoxicity and ischemia. In cultures obtained form from Cx36 knockout mice, re-expression of functional gap junction channels, containing either neuronal Cx36 or non-neuronal Cx43 or Cx31, resulted in increased neuronal death following insult. In contrast, the expression of communication-deficient gap junctions (containing mutated connexins) did not have this effect. Finally, the absence of ethidium bromide uptake in non-transduced wild-type neurons two hours following NMDAR excitotoxicity or ischemia suggested the absence of active endogenous hemichannels in those neurons. Taken together, these results suggest a role for neuronal gap junctions in cell death via a connexin type-independent mechanism that likely relies on channel activities of gap junctional complexes among neurons. A possible contribution of gap junction channel-permeable death signals in neuronal death is discussed.


Asunto(s)
Uniones Comunicantes/metabolismo , Animales , Western Blotting , Muerte Celular/genética , Muerte Celular/fisiología , Supervivencia Celular/genética , Supervivencia Celular/fisiología , Células Cultivadas , Conexinas/genética , Conexinas/metabolismo , Vectores Genéticos/genética , Células HeLa , Humanos , Lentivirus/genética , Ratones , Ratones Noqueados , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Proteína delta-6 de Union Comunicante
3.
Neurosci Lett ; 524(1): 16-9, 2012 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-22781494

RESUMEN

In the mammalian CNS, excessive release of glutamate and overactivation of glutamate receptors are responsible for the secondary (delayed) neuronal death following neuronal injury, including ischemia, traumatic brain injury (TBI) and epilepsy. Recent studies in mice showed a critical role for neuronal gap junctions in NMDA receptor-mediated excitotoxicity and ischemia-mediated neuronal death. Here, using controlled cortical impact (CCI) in adult mice, as a model of TBI, and Fluoro-Jade B staining for analysis of neuronal death, we set to determine whether neuronal gap junctions play a role in the CCI-mediated secondary neuronal death. We report that 24h post-CCI, substantial neuronal death is detected in a number of brain regions outside the injury core, including the striatum. The striatal neuronal death is reduced both in wild-type mice by systemic administration of mefloquine (a relatively selective blocker of neuronal gap junctions) and in knockout mice lacking connexin 36 (neuronal gap junction protein). It is also reduced by inactivation of group II metabotropic glutamate receptors (with LY341495) which, as reported previously, control the rapid increase in neuronal gap junction coupling following different types of neuronal injury. The results suggest that neuronal gap junctions play a critical role in the CCI-induced secondary neuronal death.


Asunto(s)
Lesiones Encefálicas/patología , Encéfalo/patología , Conexinas/genética , Uniones Comunicantes/fisiología , Neuronas/fisiología , Animales , Encéfalo/metabolismo , Lesiones Encefálicas/metabolismo , Muerte Celular , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Uniones Comunicantes/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/patología , Receptores de Glutamato Metabotrópico/antagonistas & inhibidores , Proteína delta-6 de Union Comunicante
4.
J Neurosci ; 32(2): 713-25, 2012 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-22238107

RESUMEN

In the mammalian CNS, excessive release of glutamate and overactivation of glutamate receptors are responsible for the secondary (delayed) neuronal death following neuronal injury, including ischemia, traumatic brain injury (TBI), and epilepsy. The coupling of neurons by gap junctions (electrical synapses) increases during neuronal injury. We report here that the ischemic increase in neuronal gap junction coupling is regulated by glutamate via group II metabotropic glutamate receptors (mGluRs). Specifically, using electrotonic coupling, Western blots, and siRNA in the mouse somatosensory cortex in vivo and in vitro, we demonstrate that activation of group II mGluRs increases background levels of neuronal gap junction coupling and expression of connexin 36 (Cx36) (neuronal gap junction protein), and inactivation of group II mGluRs prevents the ischemia-mediated increases in the coupling and Cx36 expression. We also show that the regulation is via cAMP/PKA (cAMP-dependent protein kinase)-dependent signaling and posttranscriptional control of Cx36 expression and that other glutamate receptors are not involved in these regulatory mechanisms. Furthermore, using the analysis of neuronal death, we show that inactivation of group II mGluRs or genetic elimination of Cx36 both dramatically reduce ischemia-mediated neuronal death in vitro and in vivo. Similar results are obtained using in vitro models of TBI and epilepsy. Our results indicate that neuronal gap junction coupling is a critical component of glutamate-dependent neuronal death. They also suggest that causal link among group II mGluR function, neuronal gap junction coupling, and neuronal death has a universal character and operates in different types of neuronal injuries.


Asunto(s)
Isquemia Encefálica/patología , Uniones Comunicantes/fisiología , Ácido Glutámico/fisiología , Neuronas/fisiología , Animales , Isquemia Encefálica/fisiopatología , Muerte Celular/fisiología , Células Cultivadas , Corteza Cerebral/citología , Conexinas/genética , Conexinas/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/patología , Proteína delta-6 de Union Comunicante
5.
J Neurosci ; 31(16): 5909-20, 2011 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-21508216

RESUMEN

Coupling of neurons by electrical synapses (gap junctions) transiently increases in the mammalian CNS during development. We report here that the developmental increase in neuronal gap junction coupling and expression of connexin 36 (Cx36; neuronal gap junction protein) are regulated by an interplay between the activity of group II metabotropic glutamate receptors (mGluRs) and GABA(A) receptors. Specifically, using dye coupling, electrotonic coupling, Western blots and small interfering RNA in the rat and mouse hypothalamus and cortex in vivo and in vitro, we demonstrate that activation of group II mGluRs augments, and inactivation prevents, the developmental increase in neuronal gap junction coupling and Cx36 expression. However, changes in GABA(A) receptor activity have the opposite effects. The regulation by group II mGluRs is via cAMP/PKA-dependent signaling, and regulation by GABA(A) receptors is via Ca(2+)/PKC-dependent signaling. Furthermore, the receptor-mediated upregulation of Cx36 requires a neuron-restrictive silencer element in the Cx36 gene promoter, and the downregulation involves the 3'-untranslated region of the Cx36 mRNA, as shown using reverse-transcription quantitative real-time PCR and luciferase reporter activity analysis. In addition, the methyl thiazolyl tetrazolium analysis indicates that mechanisms for the developmental increase in neuronal gap junction coupling directly control the death/survival mechanisms in developing neurons. Together, the results suggest a multitiered strategy for chemical synapses in developmental regulation of electrical synapses.


Asunto(s)
Corteza Cerebral/metabolismo , Conexinas/metabolismo , Sinapsis Eléctricas/metabolismo , Hipotálamo/metabolismo , Neuronas/metabolismo , Neurotransmisores/metabolismo , Análisis de Varianza , Animales , Western Blotting , Comunicación Celular/fisiología , Células Cultivadas , Corteza Cerebral/embriología , Conexinas/genética , Femenino , Hipotálamo/embriología , Masculino , Ratones , Ratones Noqueados , ARN Interferente Pequeño , Ratas , Ratas Sprague-Dawley , Receptores de Glutamato Metabotrópico/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transmisión Sináptica/fisiología , Proteína delta-6 de Union Comunicante
6.
J Neurophysiol ; 104(6): 3551-6, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20943940

RESUMEN

N-methyl-D-aspartate receptors (NMDARs) play an important role in cell survival versus cell death decisions during neuronal development, ischemia, trauma, and epilepsy. Coupling of neurons by electrical synapses (gap junctions) is high or increases in neuronal networks during all these conditions. In the developing CNS, neuronal gap junctions are critical for two different types of NMDAR-dependent cell death. However, whether neuronal gap junctions play a role in NMDAR-dependent neuronal death in the mature CNS was not known. Using Fluoro-Jade B staining, we show that a single intraperitoneal administration of NMDA (100 mg/kg) to adult wild-type mice induces neurodegeneration in three forebrain regions, including rostral dentate gyrus. However, the NMDAR-mediated neuronal death is prevented by pharmacological blockade of neuronal gap junctions (with mefloquine, 30 mg/kg) and does not occur in mice lacking neuronal gap junction protein, connexin 36. Using Western blots, electrophysiology, calcium imaging, and gas chromatography-mass spectrometry in wild-type and connexin 36 knockout mice, we show that the reduced level of neuronal death in knockout animals is not caused by the reduced expression of NMDARs, activity of NMDARs, or permeability of the blood-brain barrier to NMDA. In wild-type animals, this neuronal death is not caused by upregulation of connexin 36 by NMDA. Finally, pharmacological and genetic inactivation of neuronal gap junctions in mice also dramatically reduces neuronal death caused by photothrombotic focal cerebral ischemia. The results indicate that neuronal gap junctions are required for NMDAR-dependent excitotoxicity and play a critical role in ischemic neuronal death.


Asunto(s)
Isquemia Encefálica/fisiopatología , Uniones Comunicantes/fisiología , N-Metilaspartato/toxicidad , Degeneración Nerviosa/inducido químicamente , Neuronas/fisiología , Neurotoxinas/toxicidad , Receptores de N-Metil-D-Aspartato/fisiología , Animales , Apoptosis/efectos de los fármacos , Barrera Hematoencefálica , Isquemia Encefálica/inducido químicamente , Células Cultivadas/efectos de los fármacos , Células Cultivadas/fisiología , Conexinas/deficiencia , Giro Dentado/efectos de los fármacos , Giro Dentado/patología , Maleato de Dizocilpina/farmacología , Maleato de Dizocilpina/uso terapéutico , Antagonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/uso terapéutico , Uniones Comunicantes/efectos de los fármacos , Masculino , Mefloquina/farmacología , Mefloquina/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , N-Metilaspartato/farmacocinética , Degeneración Nerviosa/prevención & control , Neurotoxinas/farmacocinética , Técnicas de Placa-Clamp , Fotoquímica , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Rosa Bengala/efectos de la radiación , Rosa Bengala/toxicidad , Proteína delta-6 de Union Comunicante
7.
Neurosci Lett ; 445(1): 26-30, 2008 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-18778753

RESUMEN

We recently used Western blots for connexin 36 and neuronal dye coupling with neurobiotin to measure developmental decrease in neuronal gap junction coupling in cell cultures. To ask whether Ca2+ imaging also can be used to measure changes in the amount of neuronal gap junction coupling, we defined a Ca2+ coupling coefficient as the percentage of neurons with bicuculline-induced increases in intracellular Ca2+ that are suppressed by blocking gap junctions. We demonstrate in rat and mouse hypothalamic neuronal cultures that the Ca2+ coupling coefficient decreases during culture development, this decrease is prevented by manipulations that also prevent developmental decrease in neuronal gap junction coupling, and the coefficient is low in cultures lacking connexin 36. The results indicate that Ca2+ imaging is a useful tool to quantify the amount of neuronal gap junction coupling in cultures.


Asunto(s)
Calcio/metabolismo , Diagnóstico por Imagen/métodos , Uniones Comunicantes/metabolismo , Neuronas/metabolismo , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Análisis de Varianza , Anestésicos/farmacología , Animales , Bicuculina/farmacología , Proteína de Unión a CREB/metabolismo , Proteína de Unión a CREB/farmacología , Células Cultivadas , Conexinas/deficiencia , Embrión de Mamíferos , Antagonistas de Aminoácidos Excitadores/farmacología , Antagonistas del GABA/farmacología , Ácido Glicirretínico/farmacología , Halotano/farmacología , Hipotálamo Medio/citología , Ratones , Ratones Noqueados , Neuronas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/deficiencia , Valina/análogos & derivados , Valina/farmacología , Proteína delta-6 de Union Comunicante
8.
J Neurophysiol ; 99(5): 2443-55, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18322006

RESUMEN

Specification of neurotransmitter phenotype is critical for neural circuit development and is influenced by intrinsic and extrinsic factors. Recent findings in rat hypothalamus in vitro suggest the role of neurotransmitter glutamate in the regulation of cholinergic phenotype. Here we extended our previous studies on the mechanisms of glutamate-dependent regulation of cholinergic phenotypic properties in hypothalamic neurons. Using immunocytochemistry, electrophysiology, and calcium imaging, we demonstrate that hypothalamic expression of choline acetyltransferase (the cholinergic marker) and responsiveness of neurons to acetylcholine (ACh) receptor agonists increase during chronic administration of an N-methyl-D-aspartate receptor (NMDAR) blocker, MK-801, in developing rats in vivo and genetic and pharmacological inactivation of NMDARs in mouse and rat developing neuronal cultures. In hypothalamic cultures, an inactivation of NMDA receptors also induces ACh-dependent synaptic activity, as do inactivations of PKA, ERK/MAPK, CREB, and NF-kappaB, which are known to be regulated by NMDA receptors. Interestingly, the increase in cholinergic properties in developing neurons that is induced by NMDAR blockade is prevented by the blockade of ACh receptors, suggesting that function of ACh receptor is required for the cholinergic up-regulation. Using dual recording of monosynaptic excitatory postsynaptic currents, we further demonstrate that chronic inactivation of ionotropic glutamate receptors induces the cholinergic phenotype in a subset of glutamatergic neurons. The phenotypic switch is partial as ACh and glutamate are coreleased. The results suggest that developing neurons may not only coexpress multiple transmitter phenotypes, but can also change the phenotypes following changes in signaling in neuronal circuits.


Asunto(s)
Neuronas/fisiología , Sistema Nervioso Parasimpático/citología , Sistema Nervioso Parasimpático/fisiología , Acetilcolina/fisiología , Animales , Calcio/metabolismo , Células Cultivadas , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Maleato de Dizocilpina/farmacología , Electrofisiología , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/fisiología , Quinasas MAP Reguladas por Señal Extracelular/fisiología , Ácido Glutámico/fisiología , Inmunohistoquímica , Técnicas In Vitro , Masculino , Ratones , Ratones Noqueados , Proteínas Quinasas Activadas por Mitógenos/fisiología , FN-kappa B/fisiología , Neuronas/efectos de los fármacos , Sistema Nervioso Parasimpático/efectos de los fármacos , Fenotipo , Ratas , Ratas Sprague-Dawley , Receptores Colinérgicos/fisiología , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/fisiología , Transmisión Sináptica/fisiología , Transfección
9.
Neuroreport ; 15(1): 113-7, 2004 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-15106842

RESUMEN

Previous experiments revealed a dramatic increase in excitatory acetylcholine transmission in hypothalamic cultures during a chronic decrease in glutamate activity. Data suggested that in the absence of glutamate excitation, acetylcholine becomes the major excitatory neurotransmitter. However, non-cholinergic excitatory activity was also detected in some neurons. Here, using calcium imaging in hypothalamic cultures chronically subjected to the glutamate receptor blockade, we demonstrate the contribution of metabotropic glutamate receptors, P2-purinoreceptors, histamine receptors, adrenoreceptors, and gap junctions, but not nitric oxide to this non-cholinergic excitation. We also show that the sensitivity of neurons to receptor agonists is increased following the blockade. Data suggest that multiple components contribute to the excitatory activity in hypothalamic neurons during a long-term decrease in glutamate activity.


Asunto(s)
Antagonistas de Aminoácidos Excitadores/administración & dosificación , Neuronas/efectos de los fármacos , Neuronas/fisiología , Receptores de Glutamato/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Células Cultivadas , Agonistas de Aminoácidos Excitadores/farmacología , Ratas , Ratas Sprague-Dawley
10.
J Neurophysiol ; 88(3): 1352-62, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12205156

RESUMEN

Glutamate is a major fast excitatory neurotransmitter in the CNS including the hypothalamus. Our previous experiments in hypothalamic neuronal cultures showed that a long-term decrease in glutamate excitation upregulates ACh excitatory transmission. Data suggested that in the absence of glutamate activity in the hypothalamus in vitro, ACh becomes the major excitatory neurotransmitter and supports the excitation/inhibition balance. Here, using neuronal cultures, fura-2 Ca(2+) digital imaging, and immunocytochemistry, we studied the mechanisms of regulation of cholinergic properties in hypothalamic neurons. No ACh-dependent activity and a low number (0.5%) of cholinergic neurons were detected in control hypothalamic cultures. A chronic (2 wk) inactivation of N-methyl-D-aspartate (NMDA) ionotropic glutamate receptors, L-type voltage-gated Ca(2+) channels, calmodulin, Ca(2+)/calmodulin-dependent protein kinases II/IV (CaMK II/IV), or protein kinase C (PKC) increased the number of cholinergic neurons (to 15-24%) and induced ACh activity (in 40-60% of cells). Additionally, ACh activity and an increased number of cholinergic neurons were detected in hypothalamic cultures 2 wk after a short-term (30 min) pretreatment with bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid tetrakis(acetoxy-methyl) ester (BAPTA AM; 2.5 microM), a membrane permeable Ca(2+)-chelating agent that blocks cytoplasmic Ca(2+) fluctuations. An increase in the number of cholinergic neurons following a chronic NMDA receptor blockade was likely due to the induction of cholinergic phenotypic properties in postmitotic noncholinergic neurons, as determined using 5-bromo-2'-deoxyuridine (BrdU) labeling. In contrast, a chronic inactivation of non-NMDA glutamate receptors or cGMP-dependent protein kinase had little effect on the expression of ACh properties. The data suggest that Ca(2+), at normal intracellular concentrations, tonically suppresses the development of cholinergic properties in hypothalamic neurons. However, a decrease in Ca(2+) influx into cells (through NMDA receptors or L-type Ca(2+) channels), inactivation of intracellular Ca(2+) fluctuations, or downregulation of Ca(2+)-dependent signal transduction pathways (CaMK II/IV and PKC) remove the tonic inhibition and trigger the development of cholinergic phenotype in some hypothalamic neurons. An increase in excitatory ACh transmission may represent a novel form of neuronal plasticity that regulates the activity and excitability of neurons during a decrease in glutamate excitation. This type of plasticity has apparent region-specific character and is not expressed in the cortex in vitro; neither increase in ACh activity nor change in the number of cholinergic neurons were detected in cortical cultures under all experimental conditions.


Asunto(s)
Acetilcolina/fisiología , Calcio/fisiología , Hipotálamo/fisiología , Neuronas/fisiología , Animales , Bromodesoxiuridina , Células Cultivadas , Hipotálamo/citología , Fenotipo , Ratas , Ratas Sprague-Dawley , Transmisión Sináptica/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA