Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 5481, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38942792

RESUMEN

Tigecycline is widely used for treating complicated bacterial infections for which there are no effective drugs. It inhibits bacterial protein translation by blocking the ribosomal A-site. However, even though it is also cytotoxic for human cells, the molecular mechanism of its inhibition remains unclear. Here, we present cryo-EM structures of tigecycline-bound human mitochondrial 55S, 39S, cytoplasmic 80S and yeast cytoplasmic 80S ribosomes. We find that at clinically relevant concentrations, tigecycline effectively targets human 55S mitoribosomes, potentially, by hindering A-site tRNA accommodation and by blocking the peptidyl transfer center. In contrast, tigecycline does not bind to human 80S ribosomes under physiological concentrations. However, at high tigecycline concentrations, in addition to blocking the A-site, both human and yeast 80S ribosomes bind tigecycline at another conserved binding site restricting the movement of the L1 stalk. In conclusion, the observed distinct binding properties of tigecycline may guide new pathways for drug design and therapy.


Asunto(s)
Microscopía por Crioelectrón , Ribosomas , Tigeciclina , Tigeciclina/farmacología , Tigeciclina/química , Humanos , Ribosomas/metabolismo , Ribosomas/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Sitios de Unión , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Ribosomas Mitocondriales/metabolismo , Ribosomas Mitocondriales/química , Ribosomas Mitocondriales/efectos de los fármacos , Modelos Moleculares , ARN de Transferencia/metabolismo , ARN de Transferencia/química
2.
EMBO Rep ; 24(12): e57984, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37921038

RESUMEN

The rixosome defined in Schizosaccharomyces pombe and humans performs diverse roles in pre-ribosomal RNA processing and gene silencing. Here, we isolate and describe the conserved rixosome from Chaetomium thermophilum, which consists of two sub-modules, the sphere-like Rix1-Ipi3-Ipi1 and the butterfly-like Las1-Grc3 complex, connected by a flexible linker. The Rix1 complex of the rixosome utilizes Sda1 as landing platform on nucleoplasmic pre-60S particles to wedge between the 5S rRNA tip and L1-stalk, thereby facilitating the 180° rotation of the immature 5S RNP towards its mature conformation. Upon rixosome positioning, the other sub-module with Las1 endonuclease and Grc3 polynucleotide-kinase can reach a strategic position at the pre-60S foot to cleave and 5' phosphorylate the nearby ITS2 pre-rRNA. Finally, inward movement of the L1 stalk permits the flexible Nop53 N-terminus with its AIM motif to become positioned at the base of the L1-stalk to facilitate Mtr4 helicase-exosome participation for completing ITS2 removal. Thus, the rixosome structure elucidates the coordination of two central ribosome biogenesis events, but its role in gene silencing may adapt similar strategies.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Schizosaccharomyces , Humanos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Nucleares/metabolismo , Rotación , ARN Ribosómico/metabolismo , Ribosomas/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Procesamiento Postranscripcional del ARN , Proteínas Ribosómicas/genética
3.
Nat Commun ; 13(1): 6411, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36302773

RESUMEN

Translational stalling events that result in ribosome collisions induce Ribosome-associated Quality Control (RQC) in order to degrade potentially toxic truncated nascent proteins. For RQC induction, the collided ribosomes are first marked by the Hel2/ZNF598 E3 ubiquitin ligase to recruit the RQT complex for subunit dissociation. In yeast, uS10 is polyubiquitinated by Hel2, whereas eS10 is preferentially monoubiquitinated by ZNF598 in human cells for an unknown reason. Here, we characterize the ubiquitination activity of ZNF598 and its importance for human RQT-mediated subunit dissociation using the endogenous XBP1u and poly(A) translation stallers. Cryo-EM analysis of a human collided disome reveals a distinct composite interface, with substantial differences to yeast collided disomes. Biochemical analysis of collided ribosomes shows that ZNF598 forms K63-linked polyubiquitin chains on uS10, which are decisive for mammalian RQC initiation. The human RQT (hRQT) complex composed only of ASCC3, ASCC2 and TRIP4 dissociates collided ribosomes dependent on the ATPase activity of ASCC3 and the ubiquitin-binding capacity of ASCC2. The hRQT-mediated subunit dissociation requires the K63-linked polyubiquitination of uS10, while monoubiquitination of eS10 or uS10 is not sufficient. Therefore, we conclude that ZNF598 functionally marks collided mammalian ribosomes by K63-linked polyubiquitination of uS10 for the trimeric hRQT complex-mediated subunit dissociation.


Asunto(s)
Proteínas Portadoras , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Animales , Humanos , Proteínas Portadoras/metabolismo , ADN Helicasas/metabolismo , Biosíntesis de Proteínas , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
4.
Elife ; 92020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32744497

RESUMEN

Translation of aberrant mRNAs induces ribosomal collisions, thereby triggering pathways for mRNA and nascent peptide degradation and ribosomal rescue. Here we use sucrose gradient fractionation combined with quantitative proteomics to systematically identify proteins associated with collided ribosomes. This approach identified Endothelial differentiation-related factor 1 (EDF1) as a novel protein recruited to collided ribosomes during translational distress. Cryo-electron microscopic analyses of EDF1 and its yeast homolog Mbf1 revealed a conserved 40S ribosomal subunit binding site at the mRNA entry channel near the collision interface. EDF1 recruits the translational repressors GIGYF2 and EIF4E2 to collided ribosomes to initiate a negative-feedback loop that prevents new ribosomes from translating defective mRNAs. Further, EDF1 regulates an immediate-early transcriptional response to ribosomal collisions. Our results uncover mechanisms through which EDF1 coordinates multiple responses of the ribosome-mediated quality control pathway and provide novel insights into the intersection of ribosome-mediated quality control with global transcriptional regulation.


Asunto(s)
Proteínas de Unión a Calmodulina/genética , Biosíntesis de Proteínas/fisiología , Ribosomas/fisiología , Proteínas de Unión a Calmodulina/metabolismo , Células HCT116 , Células HEK293 , Humanos , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Science ; 369(6508): 1249-1255, 2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32680882

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the current coronavirus disease 2019 (COVID-19) pandemic. A major virulence factor of SARS-CoVs is the nonstructural protein 1 (Nsp1), which suppresses host gene expression by ribosome association. Here, we show that Nsp1 from SARS-CoV-2 binds to the 40S ribosomal subunit, resulting in shutdown of messenger RNA (mRNA) translation both in vitro and in cells. Structural analysis by cryo-electron microscopy of in vitro-reconstituted Nsp1-40S and various native Nsp1-40S and -80S complexes revealed that the Nsp1 C terminus binds to and obstructs the mRNA entry tunnel. Thereby, Nsp1 effectively blocks retinoic acid-inducible gene I-dependent innate immune responses that would otherwise facilitate clearance of the infection. Thus, the structural characterization of the inhibitory mechanism of Nsp1 may aid structure-based drug design against SARS-CoV-2.


Asunto(s)
Betacoronavirus/química , Evasión Inmune , Inmunidad Innata , Biosíntesis de Proteínas , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Betacoronavirus/inmunología , Betacoronavirus/metabolismo , Betacoronavirus/fisiología , Sitios de Unión , COVID-19 , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Microscopía por Crioelectrón , Proteína 58 DEAD Box/genética , Proteína 58 DEAD Box/metabolismo , Humanos , Interferón beta/genética , Interferón beta/metabolismo , Modelos Moleculares , Pandemias , Neumonía Viral/inmunología , Neumonía Viral/virología , Unión Proteica , Dominios Proteicos , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , ARN Mensajero/metabolismo , Receptores Inmunológicos , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...