Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39237012

RESUMEN

BACKGROUND: Asthma pathophysiology is associated with mitochondrial dysfunction. Mitochondrial DNA copy number (mtDNA-CN) has been used as a proxy of mitochondrial function, with lower levels indicating mitochondrial dysfunction in population studies of cardiovascular diseases and cancers. OBJECTIVES: We investigate whether lower levels of mtDNA-CN are associated with asthma diagnosis, severity, and exacerbations. METHODS: MtDNA-CN is evaluated in blood from two cohorts: UK Biobank (UKB) (asthmatics n = 39,147; non-asthmatics n = 302,302) and Severe Asthma Research Program (SARP) (n = 1283 asthmatics, non-severe n = 703). RESULTS: Asthmatics have lower mtDNA-CN compared to non-asthmatics in UKB (beta, -0.006 [95% CI, -0.008 to -0.003], P = 6.23×10-6). Lower mtDNA-CN is associated with asthma prevalence, but not severity in UKB or SARP. mtDNA-CN declines with age but is lower in asthma than in non-asthmatics at all ages. In one-year longitudinal study in SARP, mtDNA-CN is associated with risk of exacerbation; those with highest mtDNA-CN have the lowest risk of exacerbation [OR 0.333 [95% CI, 0.173 to 0.542], P = 0.001]. Biomarkers of inflammation and oxidative stress are higher in asthma than non-asthmatics, but the lower mtDNA-CN in asthma are independent of general inflammation or oxidative stress. Mendelian Randomization (MR) studies suggest a potential causal relationship between asthma-associated genetic variants and mtDNA-CN. CONCLUSION: MtDNA-CN are lower in asthmatics than in non-asthmatics and are associated with exacerbations. Low mtDNA-CN in asthma are not mediated through inflammation but are associated with the genetic predisposition to asthma.

2.
Allergy Asthma Immunol Res ; 16(4): 338-352, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39155735

RESUMEN

PURPOSE: Asthma is a clinical syndrome with various underlying pathomechanisms and clinical phenotypes. Genetic, ethnic, and geographic factors may influence the differences in clinical presentation, severity, and prognosis. We compared the characteristics of asthma based on the geographical background by analyzing representative cohorts from the United States, Europe, South America, and Asia using the Severe Asthma Research Program (SARP), Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes (U-BIOPRED), Program for Control of Asthma in Bahia (ProAR), and Cohort for Reality and Evolution of Adult Asthma in Korea (COREA), respectively. METHODS: The clinical characteristics and medications for the SARP (n = 669), U-BIOPRED (n = 509), ProAR (n = 996), and COREA (n = 3,748) were analyzed. Subgroup analysis was performed for severe asthma. RESULTS: The mean age was highest and lowest in the COREA and SARP, respectively. The asthma onset age was lowest in the ProAR. The mean body mass index was highest and lowest in the SARP and COREA, respectively. Baseline pulmonary function was lowest and highest in the U-BIOPRED and COREA, respectively. The number of patients with acute exacerbation in the previous year was highest in U-BIOPRED. The mean blood eosinophil count was highest in COREA. The total immunoglobulin E was highest in the ProAR. The frequency of atopy was highest in the SARP. The principal component analysis plot revealed differences among all cohorts. CONCLUSIONS: The cohorts from 4 different continents exhibited different clinical and physiological characteristics, probably resulting from the interplay between genetic susceptibility and geographical factors.

3.
Int Arch Allergy Immunol ; : 1-15, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38885626

RESUMEN

BACKGROUND: Eosinophils have numerous roles in type 2 inflammation depending on their activation states in the blood and airway or after encounter with inflammatory mediators. Airway epithelial cells have a sentinel role in the lung and, by instructing eosinophils, likely have a foundational role in asthma pathogenesis. SUMMARY: In this review, we discuss various topics related to eosinophil-epithelial cell interactions in asthma, including the influence of eosinophils and eosinophil products, e.g., granule proteins, on epithelial cell function, expression, secretion, and plasticity; the effects of epithelial released factors, including oxylipins, cytokines, and other mediators on eosinophils, e.g., on their activation, expression, and survival; possible mechanisms of eosinophil-epithelial cell adhesion; and the role of intra-epithelial eosinophils in asthma. KEY MESSAGES: We suggest that eosinophils and their products can have both injurious and beneficial effects on airway epithelial cells in asthma and that there are bidirectional interactions and signaling between eosinophils and airway epithelial cells in asthma.

4.
Nat Commun ; 15(1): 3900, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724552

RESUMEN

By incompletely understood mechanisms, type 2 (T2) inflammation present in the airways of severe asthmatics drives the formation of pathologic mucus which leads to airway mucus plugging. Here we investigate the molecular role and clinical significance of intelectin-1 (ITLN-1) in the development of pathologic airway mucus in asthma. Through analyses of human airway epithelial cells we find that ITLN1 gene expression is highly induced by interleukin-13 (IL-13) in a subset of metaplastic MUC5AC+ mucus secretory cells, and that ITLN-1 protein is a secreted component of IL-13-induced mucus. Additionally, we find ITLN-1 protein binds the C-terminus of the MUC5AC mucin and that its deletion in airway epithelial cells partially reverses IL-13-induced mucostasis. Through analysis of nasal airway epithelial brushings, we find that ITLN1 is highly expressed in T2-high asthmatics, when compared to T2-low children. Furthermore, we demonstrate that both ITLN-1 gene expression and protein levels are significantly reduced by a common genetic variant that is associated with protection from the formation of mucus plugs in T2-high asthma. This work identifies an important biomarker and targetable pathways for the treatment of mucus obstruction in asthma.


Asunto(s)
Asma , Proteínas Ligadas a GPI , Interleucina-13 , Lectinas , Mucina 5AC , Moco , Niño , Humanos , Asma/genética , Asma/metabolismo , Citocinas , Células Epiteliales/metabolismo , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Interleucina-13/genética , Interleucina-13/metabolismo , Lectinas/genética , Lectinas/metabolismo , Mucina 5AC/genética , Mucina 5AC/metabolismo , Moco/metabolismo , Mucosa Nasal/metabolismo , Polimorfismo Genético , Mucosa Respiratoria/metabolismo
5.
J Allergy Clin Immunol ; 154(3): 580-591.e6, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38663815

RESUMEN

BACKGROUND: The relative utility of eosinophil peroxidase (EPX) and blood and sputum eosinophil counts as disease biomarkers in asthma is uncertain. OBJECTIVE: We sought to determine the utility of EPX as a biomarker of systemic and airway eosinophilic inflammation in asthma. METHODS: EPX protein was measured by immunoassay in serum and sputum in 110 healthy controls to establish a normal reference range and in repeated samples of serum and sputum collected during 3 years of observation in 480 participants in the Severe Asthma Research Program 3. RESULTS: Over 3 years, EPX levels in patients with asthma were higher than normal in 27% to 31% of serum samples and 36% to 53% of sputum samples. Eosinophils and EPX correlated better in blood than in sputum (rs values of 0.74 and 0.43, respectively), and high sputum EPX levels occurred in 27% of participants with blood eosinophil counts less than 150 cells/µL and 42% of participants with blood eosinophil counts between 150 and 299 cells/µL. Patients with persistently high sputum EPX values for 3 years were characterized by severe airflow obstruction, frequent exacerbations, and high mucus plug scores. In 59 patients with asthma who started mepolizumab during observation, serum EPX levels normalized in 96% but sputum EPX normalized in only 49%. Lung function remained abnormal even when sputum EPX normalized. CONCLUSIONS: Serum EPX is a valid protein biomarker of systemic eosinophilic inflammation in asthma, and sputum EPX levels are a more sensitive biomarker of airway eosinophilic inflammation than sputum eosinophil counts. Eosinophil measures in blood frequently miss airway eosinophilic inflammation, and mepolizumab frequently fails to normalize airway eosinophilic inflammation even though it invariably normalizes systemic eosinophilic inflammation.


Asunto(s)
Asma , Biomarcadores , Peroxidasa del Eosinófilo , Eosinófilos , Esputo , Humanos , Asma/sangre , Asma/diagnóstico , Asma/inmunología , Asma/tratamiento farmacológico , Peroxidasa del Eosinófilo/metabolismo , Biomarcadores/sangre , Masculino , Femenino , Persona de Mediana Edad , Adulto , Esputo/inmunología , Eosinófilos/inmunología , Recuento de Leucocitos , Inflamación , Anciano , Anticuerpos Monoclonales Humanizados
6.
Clin Exp Allergy ; 54(4): 265-277, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38253462

RESUMEN

INTRODUCTION: Previous bronchoalveolar lavage fluid (BALF) proteomic analysis has evaluated limited numbers of subjects for only a few proteins of interest, which may differ between asthma and normal controls. Our objective was to examine a more comprehensive inflammatory biomarker panel in quantitative proteomic analysis for a large asthma cohort to identify molecular phenotypes distinguishing severe from nonsevere asthma. METHODS: Bronchoalveolar lavage fluid from 48 severe and 77 nonsevere adult asthma subjects were assessed for 75 inflammatory proteins, normalized to BALF total protein concentration. Validation of BALF differences was sought through equivalent protein analysis of autologous sputum. Subjects' data, stratified by asthma severity, were analysed by standard statistical tests, principal component analysis and 5 machine learning algorithms. RESULTS: The severe group had lower lung function and greater health care utilization. Significantly increased BALF proteins for severe asthma compared to nonsevere asthma were fibroblast growth factor 2 (FGF2), TGFα, IL1Ra, IL2, IL4, CCL8, CCL13 and CXCL7 and significantly decreased were platelet-derived growth factor a-a dimer (PDGFaa), vascular endothelial growth factor (VEGF), interleukin 5 (IL5), CCL17, CCL22, CXCL9 and CXCL10. Four protein differences were replicated in sputum. FGF2, PDGFaa and CXCL7 were independently identified by 5 machine learning algorithms as the most important variables for discriminating severe and nonsevere asthma. Increased and decreased proteins identified for the severe cluster showed significant protein-protein interactions for chemokine and cytokine signalling, growth factor activity, and eosinophil and neutrophil chemotaxis differing between subjects with severe and nonsevere asthma. CONCLUSION: These inflammatory protein results confirm altered airway remodelling and cytokine/chemokine activity recruiting leukocytes into the airways of severe compared to nonsevere asthma as important processes even in stable status.


Asunto(s)
Asma , Factor A de Crecimiento Endotelial Vascular , Adulto , Humanos , Proteómica , Factor 2 de Crecimiento de Fibroblastos , Citocinas/metabolismo , Lavado Broncoalveolar , Quimiocinas , Líquido del Lavado Bronquioalveolar
7.
Am J Respir Crit Care Med ; 209(10): 1196-1207, 2024 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-38113166

RESUMEN

Rationale: Density thresholds in computed tomography (CT) lung scans quantify air trapping (AT) at the whole-lung level but are not informative for AT in specific bronchopulmonary segments. Objectives: To apply a segment-based measure of AT in asthma to investigate the clinical determinants of AT in asthma. Methods: In each of 19 bronchopulmonary segments in CT lung scans from 199 patients with asthma, AT was categorized as present if lung attenuation was less than -856 Hounsfield units at expiration in ⩾15% of the lung area. The resulting AT segment score (0-19) was related to patient outcomes. Measurements and Main Results: AT varied at the lung segment level and tended to persist at the patient and lung segment levels over 3 years. Patients with widespread AT (⩾10 segments) had more severe asthma (P < 0.05). The mean (±SD) AT segment score in patients with a body mass index ⩾30 kg/m2 was lower than in patients with a body mass index <30 kg/m2 (3.5 ± 4.6 vs. 5.5 ± 6.3; P = 0.008), and the frequency of AT in lower lobe segments in obese patients was less than in upper and middle lobe segments (35% vs. 46%; P = 0.001). The AT segment score in patients with sputum eosinophils ⩾2% was higher than in patients without sputum eosinophilia (7.0 ± 6.1 vs. 3.3 ± 4.9; P < 0.0001). Lung segments with AT more frequently had airway mucus plugging than lung segments without AT (48% vs. 18%; P ⩽ 0.0001). Conclusions: In patients with asthma, air trapping is more severe in those with airway eosinophilia and mucus plugging, whereas those who are obese have less severe trapping because their lower lobe segments are spared.


Asunto(s)
Asma , Eosinofilia , Obesidad , Tomografía Computarizada por Rayos X , Humanos , Asma/diagnóstico por imagen , Asma/fisiopatología , Masculino , Femenino , Persona de Mediana Edad , Obesidad/complicaciones , Obesidad/fisiopatología , Adulto , Eosinofilia/diagnóstico por imagen , Pulmón/diagnóstico por imagen , Pulmón/fisiopatología , Anciano , Índice de Masa Corporal
8.
JCI Insight ; 9(3)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38127464

RESUMEN

BACKGROUNDInformation about the size, airway location, and longitudinal behavior of mucus plugs in asthma is needed to understand their role in mechanisms of airflow obstruction and to rationally design muco-active treatments.METHODSCT lung scans from 57 patients with asthma were analyzed to quantify mucus plug size and airway location, and paired CT scans obtained 3 years apart were analyzed to determine plug behavior over time. Radiologist annotations of mucus plugs were incorporated in an image-processing pipeline to generate size and location information that was related to measures of airflow.RESULTSThe length distribution of 778 annotated mucus plugs was multimodal, and a 12 mm length defined short ("stubby", ≤12 mm) and long ("stringy", >12 mm) plug phenotypes. High mucus plug burden was disproportionately attributable to stringy mucus plugs. Mucus plugs localized predominantly to airway generations 6-9, and 47% of plugs in baseline scans persisted in the same airway for 3 years and fluctuated in length and volume. Mucus plugs in larger proximal generations had greater effects on spirometry measures than plugs in smaller distal generations, and a model of airflow that estimates the increased airway resistance attributable to plugs predicted a greater effect for proximal generations and more numerous mucus plugs.CONCLUSIONPersistent mucus plugs in proximal airway generations occur in asthma and demonstrate a stochastic process of formation and resolution over time. Proximal airway mucus plugs are consequential for airflow and are in locations amenable to treatment by inhaled muco-active drugs or bronchoscopy.TRIAL REGISTRATIONClinicaltrials.gov; NCT01718197, NCT01606826, NCT01750411, NCT01761058, NCT01761630, NCT01716494, and NCT01760915.FUNDINGAstraZeneca, Boehringer-Ingelheim, Genentech, GlaxoSmithKline, Sanofi-Genzyme-Regeneron, and TEVA provided financial support for study activities at the Coordinating and Clinical Centers beyond the third year of patient follow-up. These companies had no role in study design or data analysis, and the only restriction on the funds was that they be used to support the SARP initiative.


Asunto(s)
Asma , Humanos , Broncoscopía , Pulmón/diagnóstico por imagen , Moco , Tomografía Computarizada por Rayos X
9.
medRxiv ; 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38106101

RESUMEN

Rationale: Although airway oxidative stress and inflammation are central to asthma pathogenesis, there is limited knowledge of the relationship of asthma risk, severity, or exacerbations to mitochondrial dysfunction, which is pivotal to oxidant generation and inflammation. Objectives: We investigated whether mitochondrial DNA copy number (mtDNA-CN) as a measure of mitochondrial function is associated with asthma diagnosis, severity, oxidative stress, and exacerbations. Methods: We measured mtDNA-CN in blood in two cohorts. In the UK Biobank (UKB), we compared mtDNA-CN in mild and moderate-severe asthmatics to non-asthmatics. In the Severe Asthma Research Program (SARP), we evaluated mtDNA-CN in relation to asthma severity, biomarkers of oxidative stress and inflammation, and exacerbations. Measures and Main Results: In UK Biobank, asthmatics (n = 29,768) have lower mtDNA-CN compared to non-asthmatics (n = 239,158) (beta, -0.026 [95% CI, -0.038 to -0.014], P = 2.46×10-5). While lower mtDNA-CN is associated with asthma, mtDNA-CN did not differ by asthma severity in either UKB or SARP. Biomarkers of inflammation show that asthmatics have higher white blood cells (WBC), neutrophils, eosinophils, fraction exhaled nitric oxide (FENO), and lower superoxide dismutase (SOD) than non-asthmatics, confirming greater oxidative stress in asthma. In one year follow-up in SARP, higher mtDNA-CN is associated with reduced risk of three or more exacerbations in the subsequent year (OR 0.352 [95% CI, 0.164 to 0.753], P = 0.007). Conclusions: Asthma is characterized by mitochondrial dysfunction. Higher mtDNA-CN identifies an exacerbation-resistant asthma phenotype, suggesting mitochondrial function is important in exacerbation risk.

10.
Front Physiol ; 14: 1178339, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37593238

RESUMEN

Purpose: The purpose of this study was to anatomically correlate ventilation defects with regions of air trapping by whole lung, lung lobe, and airway segment in the context of airway mucus plugging in asthma. Methods: A total of 34 asthmatics [13M:21F, 13 mild/moderate, median age (range) of 49.5 (36.8-53.3) years and 21 severe, 56.1 (47.1-62.6) years] and 4 healthy subjects [1M:3F, 38.5 (26.6-52.2) years] underwent HP 3He MRI and CT imaging. HP 3He MRI was assessed for ventilation defects using a semi-automated k-means clustering algorithm. Inspiratory and expiratory CTs were analyzed using parametric response mapping (PRM) to quantify markers of emphysema and functional small airways disease (fSAD). Segmental and lobar lung masks were obtained from CT and registered to HP 3He MRI in order to localize ventilation defect percent (VDP), at the lobar and segmental level, to regions of fSAD and mucus plugging. Spearman's correlation was utilized to compare biomarkers on a global and lobar level, and a multivariate analysis was conducted to predict segmental fSAD given segmental VDP (sVDP) and mucus score as variables in order to further understand the functional relationships between regional measures of obstruction. Results: On a global level, fSAD was correlated with whole lung VDP (r = 0.65, p < 0.001), mucus score (r = 0.55, p < 0.01), and moderately correlated (-0.60 ≤ r ≤ -0.56, p < 0.001) to percent predicted (%p) FEV1, FEF25-75 and FEV1/FVC, and more weakly correlated to FVC%p (-0.38 ≤ r ≤ -0.35, p < 0.001) as expected from previous work. On a regional level, lobar VDP, mucus scores, and fSAD were also moderately correlated (r from 0.45-0.66, p < 0.01). For segmental colocalization, the model of best fit was a piecewise quadratic model, which suggests that sVDP may be increasing due to local airway obstruction that does not manifest as fSAD until more extensive disease is present. sVDP was more sensitive to the presence of a mucus plugs overall, but the prediction of fSAD using multivariate regression showed an interaction in the presence of a mucus plugs when sVDP was between 4% and 10% (p < 0.001). Conclusion: This multi-modality study in asthma confirmed that areas of ventilation defects are spatially correlated with air trapping at the level of the airway segment and suggests VDP and fSAD are sensitive to specific sources of airway obstruction in asthma, including mucus plugs.

11.
Am J Physiol Lung Cell Mol Physiol ; 325(4): L399-L410, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37581221

RESUMEN

Few new therapeutics exist to target airway inflammation in mild-to-moderate asthma. Alveolar macrophages regulate airway inflammation by producing proresolving eicosanoids. We hypothesized that stimulation of the purinergic receptor P2X7 in macrophages from individuals with asthma produces eicosanoids associated with airway inflammation and resolution, and that these responses are predicted, in part, by P2X7 pore function. Study subjects were recruited in an Institutional Review Board (IRB)-approved study. Alveolar macrophages were recovered from bronchoalveolar lavage fluid following bronchoscopy. Purinergic receptor classification was performed using flow cytometry and fluorescent cell assay. Macrophages were stimulated in vitro and eicosanoids were measured via ELISA or enzyme immunoassay (EIA) in the presence and absence of P2X7-specific agonist [2'(3')-O-(4-Benzoylbenzoyl)adenosine-5'-triphosphate tri(triethylammonium) salt (Bz-ATP)] and antagonist (AZD9056). Functional P2X7 pore status was confirmed in a live cell assay using P2X7-specific agonists and antagonists. Alveolar macrophages produced increased quantities of the oxylipins lipoxin A4 (LXA4), resolvin D1 (RvD1), and 15(S)-hydroxyeicosatetraenoic acid (15(S)-HETE) following stimulation with Bz-ATP compared with vehicle controls, responses that were attenuated in the presence of the P2X7-selective antagonist, AZD9056. LXA4 and RvD1 production was greatest at 1 h, whereas 15(S)-HETE was maximally produced 24 h. Prostaglandin E-2 and resolvin E1 were minimally produced by P2X7 activation, indicating differential signaling pathways involved in eicosanoid production in alveolar macrophages derived from individuals with asthma. The early production of the proresolving eicosanoids, LXA4 and resolvin D1, is regulated by P2X7, whereas generation of the proinflammatory eicosanoid, 15(S)-HETE, is only partially regulated through P2X7 signaling and reaches maximal production after the peak in proresolving eicosanoids.NEW & NOTEWORTHY Alveolar macrophages obtained from individuals with asthma produce soluble lipid mediators in response to P2X7 purinergic receptor signaling. Proinflammatory mediators may contribute to asthma exacerbations but proresolving mediators may help with resolution of asthma loss of control. These specialized proresolving lipid mediators may serve as future potential therapeutics for asthma exacerbation resolution and recovery.


Asunto(s)
Asma , Macrófagos Alveolares , Humanos , Macrófagos Alveolares/metabolismo , Eicosanoides/metabolismo , Inflamación , Ácidos Hidroxieicosatetraenoicos
12.
J Allergy Clin Immunol Pract ; 11(11): 3425-3434.e4, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37453571

RESUMEN

BACKGROUND: The recall periods and response scales of existing surveys of asthma control are poorly suited for studying acute exacerbations. OBJECTIVE: To develop an instrument able to predict exacerbations after the onset of acute symptoms and with a recall window sufficiently short to study recovery. METHODS: We developed the six-item Acute Asthma Exacerbation Survey (AAES). Data were collected at baseline, acute, and recovery visits within an established longitudinal protocol for participants with severe asthma. Participants scheduled acute study visits at the first sign of a cold. Nasal lavage samples and lung function measurements were also collected. The AAES data were analyzed using Cronbach α, Spearman correlations, and Kruskal-Wallace methods. We used logistic regression for predictors of bursts of oral corticosteroids (OCS). RESULTS: Of 130 participants studied at baseline, 52 returned for an acute visit. The AAES scores were elevated at the acute visit and returned to baseline after recovery independently of respiratory virus detection. Cronbach α for the AAES was 0.853, 0.822, and 0.889 at the three respective visits. Compared with participants not needing burst OCS, those with exacerbations had higher acute AAES scores (16 [13.5-18] vs 11.5 [8.2-14], median [interquartile range]; P = .017) and a larger reduction from baseline in lung function. For each 3-point increase in AAES scores, the odds ratio for burst OCS use was 1.64 (95% CI, 1.04-2.57; P = .030). CONCLUSIONS: The AAES is internally consistent and dynamically responsive during acute asthma exacerbations. Additional validation studies are warranted to support future trials and aid in clinical decision-making.


Asunto(s)
Antiasmáticos , Asma , Humanos , Antiasmáticos/uso terapéutico , Progresión de la Enfermedad , Asma/tratamiento farmacológico , Asma/epidemiología , Corticoesteroides/uso terapéutico
13.
Adv Exp Med Biol ; 1426: 163-184, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37464121

RESUMEN

The imaging of asthma using chest computed tomography (CT) is well-established (Jarjour et al., Am J Respir Crit Care Med 185(4):356-62, 2012; Castro et al., J Allergy Clin Immunol 128:467-78, 2011). Moreover, recent advances in functional imaging of the lungs with advanced computer analysis of both CT and magnetic resonance images (MRI) of the lungs have begun to play a role in quantifying regional obstruction. Specifically, quantitative measurements of the airways for bronchial wall thickening, luminal narrowing and distortion, the amount of mucus plugging, parenchymal density, and ventilation defects that could contribute to the patient's disease course are instructive for the entire care team. In this chapter, we will review common imaging methods and findings that relate to the heterogeneity of asthma. This information can help to guide treatment decisions. We will discuss mucous plugging, quantitative assessment of bronchial wall thickening, delta lumen phenomenon, parenchymal low-density lung on CT, and ventilation defect percentage on MRI as metrics for assessing regional ventilatory dysfunction.


Asunto(s)
Asma , Humanos , Asma/patología , Pulmón , Tomografía Computarizada por Rayos X/métodos , Respiración , Moco/diagnóstico por imagen
14.
Adv Exp Med Biol ; 1426: 395-412, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37464130

RESUMEN

Severe asthma is a spectrum disorder with numerous subsets, many of which are defined by clinical history and a general predisposition for T2 inflammation. Most of the approved therapies for severe asthma have required clinical trial designs with population enrichment for exacerbation frequency and/or elevation of blood eosinophils. Moving beyond this framework will require trial designs that increase efficiency for studying nondominant subsets and continue to improve upon biomarker signatures. In addition to reviewing the current literature on biomarker-informed trials for severe asthma, this chapter will also review the advantages of master protocols and adaptive design methods for establishing the efficacy of new interventions in prospectively defined subsets of patients. The incorporation of methods that allow for data collection outside of traditional study visits at academic centers, called remote decentralized trial design, is a growing trend that may increase diversity in study participation and allow for enhanced resiliency during the COVID-19 pandemic. Finally, reaching the goals of precision medicine in asthma will require increased emphasis on effectiveness studies. Recent advances in real-world data utilization from electronic health records are also discussed with a view toward pragmatic trial designs that could also incorporate the evaluation of biomarker signatures.


Asunto(s)
Asma , COVID-19 , Medicina de Precisión , Humanos , Asma/diagnóstico , Asma/terapia , Biomarcadores , Ensayos Clínicos como Asunto , COVID-19/terapia , Pandemias
15.
J Asthma ; 60(10): 1843-1852, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36940238

RESUMEN

OBJECTIVE: Subphenotypes of asthma may be determined by age onset and atopic status. We sought to characterize early or late onset atopic asthma with fungal or non-fungal sensitization (AAFS or AANFS) and non-atopic asthma (NAA) in children and adults in the Severe Asthma Research Program (SARP). SARP is an ongoing project involving well-phenotyped patients with mild to severe asthma. METHODS: Phenotypic comparisons were performed using Kruskal-Wallis or chi-square test. Genetic association analyses were performed using logistic or linear regression. RESULTS: Airway hyper-responsiveness, total serum IgE levels, and T2 biomarkers showed an increasing trend from NAA to AANFS and then to AAFS. Children and adults with early onset asthma had greater % of AAFS than adults with late onset asthma (46% and 40% vs. 32%; P < 0.00001). In children, AAFS and AANFS had lower % predicted FEV1 (86% and 91% vs. 97%) and greater % of patients with severe asthma than NAA (61% and 59% vs. 43%). In adults with early or late onset asthma, NAA had greater % of patients with severe asthma than AANFS and AAFS (61% vs. 40% and 37% or 56% vs. 44% and 49%). The G allele of rs2872507 in GSDMB had higher frequency in AAFS than AANFS and NAA (0.63 vs. 0.55 and 0.55), and associated with earlier age onset and asthma severity. CONCLUSIONS: Early or late onset AAFS, AANFS, and NAA have shared and distinct phenotypic characteristics in children and adults. AAFS is a complex disorder involving genetic susceptibility and environmental factors.


Asunto(s)
Asma , Hipersensibilidad Inmediata , Niño , Adulto , Humanos , Asma/diagnóstico , Asma/genética , Estudios Longitudinales , Biomarcadores , Pruebas de Función Respiratoria
16.
J Asthma ; 60(10): 1824-1835, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36946148

RESUMEN

OBJECTIVE: Genome-wide association studies (GWASs) have identified single nucleotide polymorphisms (SNPs) in chr11p15.5 region associated with asthma and idiopathic interstitial pneumonias (IIPs). We sought to identify functional genes for asthma by combining SNPs and mRNA expression in bronchial epithelial cells (BEC) in the Severe Asthma Research Program (SARP). METHODS: Correlation analyses of mRNA expression of six candidate genes (AP2A2, MUC6, MUC2, MUC5AC, MUC5B, and TOLLIP) and asthma phenotypes were performed in the longitudinal cohort (n = 156) with RNAseq in BEC, and replicated in the cross-sectional cohort (n = 155). eQTL (n = 114) and genetic association analysis of asthma severity (426 severe vs. 531 non-severe asthma) were performed, and compared with previously published GWASs of IIPs and asthma. RESULTS: Higher expression of AP2A2 and MUC5AC and lower expression of MUC5B in BEC were correlated with asthma, asthma exacerbations, and T2 biomarkers (P < 0.01). SNPs associated with asthma and IIPs in previous GWASs were eQTL SNPs for MUC5AC, MUC5B, or TOLLIP, however, they were not in strong linkage disequilibrium. The risk alleles for asthma or protective alleles for IIPs were associated with higher expression of MUC5AC and lower expression of MUC5B. rs11603634, rs12788104, and rs28415845 associated with moderate-to-severe asthma or adult onset asthma in previous GWASs were not associated with asthma severity (P > 0.8). CONCLUSIONS: SNPs associated with asthma in chr11p15.5 region are not associated with asthma severity neither with IIPs. Higher expression of MUC5AC and lower expression of MUC5B are risk for asthma but protective for IIPs.


Asunto(s)
Asma , Humanos , Asma/genética , Estudio de Asociación del Genoma Completo , Estudios Transversales , Fenotipo , ARN Mensajero , Mucina 5B/genética , Mucina 5AC/genética
17.
J Allergy Clin Immunol ; 151(6): 1513-1524, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36796454

RESUMEN

BACKGROUND: Inhaled corticosteroids (CSs) are the backbone of asthma treatment, improving quality of life, exacerbation rates, and mortality. Although effective for most, a subset of patients with asthma experience CS-resistant disease despite receiving high-dose medication. OBJECTIVE: We sought to investigate the transcriptomic response of bronchial epithelial cells (BECs) to inhaled CSs. METHODS: Independent component analysis was performed on datasets, detailing the transcriptional response of BECs to CS treatment. The expression of these CS-response components was examined in 2 patient cohorts and investigated in relation to clinical parameters. Supervised learning was used to predict BEC CS responses using peripheral blood gene expression. RESULTS: We identified a signature of CS response that was closely correlated with CS use in patients with asthma. Participants could be separated on the basis of CS-response genes into groups with high and low signature expression. Patients with low expression of CS-response genes, particularly those with a severe asthma diagnosis, showed worse lung function and quality of life. These individuals demonstrated enrichment for T-lymphocyte infiltration in endobronchial brushings. Supervised machine learning identified a 7-gene signature from peripheral blood that reliably identified patients with poor CS-response expression in BECs. CONCLUSIONS: Loss of CS transcriptional responses within bronchial epithelium was related to impaired lung function and poor quality of life, particularly in patients with severe asthma. These individuals were identified using minimally invasive blood sampling, suggesting these findings may enable earlier triage to alternative treatments.


Asunto(s)
Asma , Calidad de Vida , Humanos , Asma/tratamiento farmacológico , Asma/genética , Asma/diagnóstico , Células Epiteliales/metabolismo , Corticoesteroides/uso terapéutico
18.
Am J Respir Crit Care Med ; 207(4): 475-484, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36194556

RESUMEN

Rationale: Extrapulmonary manifestations of asthma, including fatty infiltration in tissues, may reflect systemic inflammation and influence lung function and disease severity. Objectives: To determine if skeletal muscle adiposity predicts lung function trajectory in asthma. Methods: Adult SARP III (Severe Asthma Research Program III) participants with baseline computed tomography imaging and longitudinal postbronchodilator FEV1% predicted (median follow-up 5 years [1,132 person-years]) were evaluated. The mean of left and right paraspinous muscle density (PSMD) at the 12th thoracic vertebral body was calculated (Hounsfield units [HU]). Lower PSMD reflects higher muscle adiposity. We derived PSMD reference ranges from healthy control subjects without asthma. A linear multivariable mixed-effects model was constructed to evaluate associations of baseline PSMD and lung function trajectory stratified by sex. Measurements and Main Results: Participants included 219 with asthma (67% women; mean [SD] body mass index, 32.3 [8.8] kg/m2) and 37 control subjects (51% women; mean [SD] body mass index, 26.3 [4.7] kg/m2). Participants with asthma had lower adjusted PSMD than control subjects (42.2 vs. 55.8 HU; P < 0.001). In adjusted models, PSMD predicted lung function trajectory in women with asthma (ß = -0.47 Δ slope per 10-HU decrease; P = 0.03) but not men (ß = 0.11 Δ slope per 10-HU decrease; P = 0.77). The highest PSMD tertile predicted a 2.9% improvement whereas the lowest tertile predicted a 1.8% decline in FEV1% predicted among women with asthma over 5 years. Conclusions: Participants with asthma have lower PSMD, reflecting greater muscle fat infiltration. Baseline PSMD predicted lung function decline among women with asthma but not men. These data support an important role of metabolic dysfunction in lung function decline.


Asunto(s)
Asma , Pulmón , Adulto , Humanos , Femenino , Masculino , Adiposidad , Volumen Espiratorio Forzado , Obesidad , Músculo Esquelético/diagnóstico por imagen
19.
Am J Respir Crit Care Med ; 207(4): 438-451, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36066606

RESUMEN

Rationale: CC16 is a protein mainly produced by nonciliated bronchial epithelial cells (BECs) that participates in host defense. Reduced CC16 protein concentrations in BAL and serum are associated with asthma susceptibility. Objectives: Few studies have investigated the relationship between CC16 and asthma progression, and none has focused on BECs. In this study, we sought to determine if CC16 mRNA expression levels in BECs are associated with asthma severity. Methods: Association analyses between CC16 mRNA expression levels in BECs (242 asthmatics and 69 control subjects) and asthma-related phenotypes in Severe Asthma Research Program were performed using a generalized linear model. Measurements and Main Results: Low CC16 mRNA expression levels in BECs were significantly associated with asthma susceptibility and asthma severity, high systemic corticosteroids use, high retrospective and prospective asthma exacerbations, and low pulmonary function. Low CC16 mRNA expression levels were significantly associated with high T2 inflammation biomarkers (fractional exhaled nitric oxide and sputum eosinophils). CC16 mRNA expression levels were negatively correlated with expression levels of Th2 genes (IL1RL1, POSTN, SERPINB2, CLCA1, NOS2, and MUC5AC) and positively correlated with expression levels of Th1 and inflammation genes (IL12A and MUC5B). A combination of two nontraditional T2 biomarkers (CC16 and IL-6) revealed four asthma endotypes with different characteristics of T2 inflammation, obesity, and asthma severity. Conclusions: Our findings indicate that low CC16 mRNA expression levels in BECs are associated with asthma susceptibility, severity, and exacerbations, partially through immunomodulation of T2 inflammation. CC16 is a potential nontraditional T2 biomarker for asthma development and progression.


Asunto(s)
Asma , Uteroglobina , Humanos , Asma/genética , Asma/metabolismo , Biomarcadores , Células Epiteliales/metabolismo , Inflamación/metabolismo , Estudios Prospectivos , Estudios Retrospectivos , ARN Mensajero/metabolismo , Uteroglobina/genética , Uteroglobina/metabolismo
20.
J Allergy Clin Immunol ; 151(1): 138-146.e9, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36041656

RESUMEN

BACKGROUND: Children with asthma are at risk for low lung function extending into adulthood, but understanding of clinical predictors is incomplete. OBJECTIVE: We sought to determine phenotypic factors associated with FEV1 throughout childhood in the Severe Asthma Research Program 3 pediatric cohort. METHODS: Lung function was measured at baseline and annually. Multivariate linear mixed-effects models were constructed to assess the effect of baseline and time-varying predictors of prebronchodilator FEV1 at each assessment for up to 6 years. All models were adjusted for age, predicted FEV1 by Global Lung Function Initiative reference equations, race, sex, and height. Secondary outcomes included postbronchodilator FEV1 and prebronchodilator FEV1/forced vital capacity. RESULTS: A total of 862 spirometry assessments were performed for 188 participants. Factors associated with FEV1 include baseline Feno (B, -49 mL/log2 PPB; 95% CI, -92 to -6), response to a characterizing dose of triamcinolone acetonide (B, -8.4 mL/1% change FEV1 posttriamcinolone; 95% CI, -12.3 to -4.5), and maximal bronchodilator reversibility (B, -27 mL/1% change postbronchodilator FEV1; 95% CI, -37 to -16). Annually assessed time-varying factors of age, obesity, and exacerbation frequency predicted FEV1 over time. Notably, there was a significant age and sex interaction. Among girls, there was no exacerbation effect. For boys, however, moderate (1-2) exacerbation frequency in the previous 12 months was associated with -20 mL (95% CI, -39 to -2) FEV1 at each successive year. High exacerbation frequency (≥3) 12 to 24 months before assessment was associated with -34 mL (95% CI, -61 to -7) FEV1 at each successive year. CONCLUSIONS: In children with severe and nonsevere asthma, several clinically relevant factors predict FEV1 over time. Boys with recurrent exacerbations are at high risk of lower FEV1 through childhood.


Asunto(s)
Asma , Masculino , Femenino , Niño , Humanos , Adulto , Volumen Espiratorio Forzado , Asma/tratamiento farmacológico , Broncodilatadores/uso terapéutico , Broncodilatadores/farmacología , Pruebas de Función Respiratoria , Espirometría , Pulmón
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...